

Фанкойлы

Содержание/Продукты и технологии

ESTRO 1.2	Фанкойлы с центробежным вентилятором 20 моделей, 8 вариантов от 1 до 11 кВт.	стр. 6
FLAT	Фанкойлы специальной конструкции с центробежным вентилятором 7 моделей, 2 варианта от 2 до 4,6 кВт	стр. 13
2X1	Внутренние блоки для систем кондиционирования воздуха 4 модели от 1 до 4 кВт	стр. 17
IWC	Кассетные фанкойлы 6 моделей, 2 варианта от 2 до 10 кВт	стр. 20
PWN	Канальные фанкойлы 9 моделей от 2,5 до 10 кВт	стр. 25
UTN	Высоконапорные канальные фанкойлы 14 моделей от 2,5 до 22 кВт	стр. 28
WH	Настенные фанкойлы 3 модели, 2 варианта от 2 до 4,3 кВт	стр. 31
KAIMAN	Термоконвекторы 6 моделей до 2 кВт	стр. 33
BRUSHLESS	Вентиляторы с ЕС-моторами	стр. 35
BIOXIGEN	Системы ионизации и санитарной обработки для внутренних блоков	стр. 36

Содержание/СПЕЦИАЛИЗИРОВАННЫЕ СИСТЕМЫ УПРАВЛЕНИЯ

Addiletti	• • • • • • • • • • • • • • • • • • •	
EVO	Управляющий контроллер с дистанционным настенным пультом NEW	стр. 38
MYCOMFORT	Микропроцессорное устройство управления с ЖКД	стр. 39
LED503	Устройство управления для встроенной установки	стр. 40
ERGO	Программное обеспечение для контроля систем ОВКВ	стр. 41

ПРИМЕЧАНИЯ	

Ассортимент изделий иинновационные технологии ESTRO 1.2

FLAT

2X1

IWC

PWN

UTN

WH

KAIMAN

BRUSHLESS

BIOXIGEN

ESTRO 1.2 Фанкойлы С ЦЕНТРОБЕЖНЫМ ВЕНТИЛЯТОРОМ

Наиболее широкий ассортимент фанкойлы на всем рынке, в котором отражена технология, уровень качества и надежность изделий компании Galletti.

Концепция, заложенная в основу конструкции, позволяет сочетать вертикально и горизонтально устанавливаемые модели, модели, предназначенные для установки на стенах, полу и потолке, а также модели для встраивания в стены и потолок, плюс низкопрофильные модели для монтажа на полу. По запросу могут быть поставлены низкопрофильные вертикальные и горизонтальные встраиваемые модели.

20 моделей с мощностью охлаждения от 1 до 11 кВт в 8 разных вариантах:

Для проекта ESTRO 1.2 мы выбрали материалы самого высшего качества и уделили особое внимание сборке основных конструкционных компонентов, что делает фанкойлы производства компании Galletti очень надежными с точки зрения качества работы при низком уровне шума. Округлые формы и цвета, удовлетворяющие эстетическим и архитектурным требованиям

- ОСНОВНОЙ КОРПУС ВЫПОЛНЕН ИЗ... толстостенного стального листа, боковые панели,

решетка выпуска воздуха (поворачивается на 180°) и задняя воздухозаборная решетка выполнены из пластика **ABS.**

- НЕСУЩАЯ конструкция выполнена из толстостенного оцинкованного стального листа, изолированного огнестойкими панелями 1 класса. Варианты, предназначенные для горизонтального расположения, оснащены большим поддоном для сбора воды.
- ВЫСОКОЭФФЕКТИВНЫЙ теплообменник, выполненный из медной трубки с алюминиевым оперением, насаженным на трубки методом терморасширения, оснащен латунным коллектором и клапаном сброса воздуха. Теплообменник поставляется с подключениями для воды, установленными слева, но его можно развернуть на 180°.
 - По запросу можно установить дополнительный теплообменник в контуре горячей воды, если предполагается установка ESTRO1.2 в 4-трубной системе.
- ЦЕНТРОБЕЖНЫЕ ВЕНТИЛЯТОРЫ с двойным воздухозабором, статически и динамически сбалансированные, выполненные из антистатического пластика ABS, с лопастями аэродинамического сечения и модулями отклонения.
- ЭЛЕКТРОДВИГАТЕЛЬ, смонтированный на виброгасящих муфтах с постоянно включенным конденсатором и тепловой

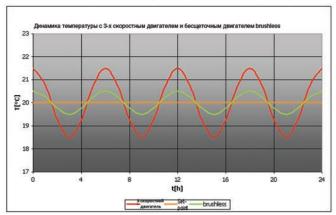
постоянно включенным конденсатором и тепловой защитой обмоток, непосредственно соединенный с вентиляторами; выпускается в трех вариантах для удовлетворения любых требований к качеству работы, уровню шума и характеристикам работы:

- три скорости
- шесть скоростей
- с постоянными магнитами

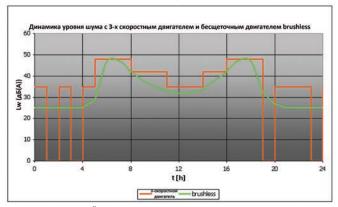
Устройство оборудовано платой инвертора для управления двигателем, которая может использоваться отдельно или может быть установлена на сам двигатель. Такая система позволяет максимально точно установить предельную скорость вращения привода (сигнал управления 0-10 В), даже если приходится контролировать максимальную скорость вращения для уменьшения шума.

Управляющий инвертор оснащен датчиком Холла, который позволяет точнейшим образом определять положение ротора, поэтому возможно вращение даже при очень малой скорости.

- СОТОВЫЙ МОЮЩИЙСЯ ПОЛИПРОПИЛЕНОВЫЙ ВОЗДУШНЫЙ ФИЛЬТР, установленный на раме из оцинкованного листа, защищен сеткой, которая легко снимается при проведении технического обслуживания. В вариантах FU и FB воздушные фильтры устанавливаются на решетку воздухозабора, расположенную на передней панели шкафа.
- ПУЛЬТЫ УПРАВЛЕНИЯ выпускаются в качестве вспомогательных устройств для контроля и регулировки температуры посредством микропроцессорной системы, которая автоматически регулирует работу вентиляторного доводчика в соответствии с условиями окружающей среды.



Вентиляторы с ЕС-моторами


Фанкойлы компании Galletti могут быть оснащены бесщеточными электромоторами с постоянными магнитами, которые управляются инвертором, что позволяет плавно регулировать количество оборотов вентилятора.

Значительным преимуществом бесщеточных двигателей является значительное снижение потребления электроэнергии, которое при мгновенном срабатывании достигает $^{2}I_{3}$ потребления обычных двигателей и **составляет около 50** % при совместной работе, что приводит к сокращению выбросов CO $_{2}$!

Технология инверторов постоянного тока позволяет плавно регулировать поток воздуха для соответствия фактическим потребностям в данных условиях окружающей среды, значительно снижая колебания температуры, характерные для пошагового регулирования.

Непосредственно из-за этого снижается уровень шума от доводчика, так как он теперь работает в соответствии с потребностями окружающей среды.

ВНУТРЕННИЕ УСТРОЙСТВА С ОБЕЗЗАРАЖИВАНИЕМ ВОЗДУХА

Много лет компания Galletti использует инновационный швейцарский патент Bioxigen® для оснащения внутренних устройств, который выделяет активные ионы и обеспечивает тройное воздействие:

- > обеззараживает внутренний блок и обрабатываемый воздух Pioxigen*
- > устраняет запахи

6

> повышает качество воздуха в помещении

Благодаря применению во внутренних устройствах компании Galletti **технология Bioxigen®** резко сокращает микробиологическую загрязненность воздуха, снижает количество мелкодисперсной пыли, тем самым регенерируя воздух и поддерживая правильный ионный баланс.

Активные ионы **Bioxigen**® обеззараживают и дезодорируют воздух, уменьшая риск заражения инфекциями и частоту хронических заболеваний (респираторных болезней, аллергии, астмы и т. п.).

FL\FLI

настенные, в декоративном корпусе, поток воздуха вертикальный

FA\FAI

настенные, в декоративном корпусе, с наклонным потоком воздуха

FU\FUI

напольные и потолочные, в декоративном корпусе, входная и воздухозаборная решетка с фильтром

FP\FPI

потолочные, в декоративном корпусе выходные решетки и задняя воздухозаборная решетка с фильтром

FB\FBI

низкопрофильная модель для установки на полу и на потолке, высота 438 мм, в декоративном корпусе выходные решетки и решетки воздухозабора с фильтрами

FBC\FBCI

низкопрофильные модели для скрытого вертикального и горизонтального монтажа, высота 412 мм, воздухозабор спереди, корпус с теплоизоляцией, выполнен из оцинкованной стали

FC\FCI

модели для скрытого вертикального и горизонтального монтажа, теплоизолированный корпус из оцинкованной стали

FF\FFI

модели для скрытого вертикального и горизонтального монтажа, воздухозабор спереди, теплоизолированный корпус из оцинкованной стали

ФАНКОЙЛЫ С ЦЕНТРОБЕЖНЫМ ВЕНТИЛЯТОРОМ**ESTRO 1.2**

- Встроенный переключатель скоростей
- Встроенный переключатель скоростей и термостат
- Встроенный переключатель скоростей, термостат и переключатель летнего/зимнего режима работы
- Термостат для поддержания минимальной температуры воды в режиме обогрева для электромеханических устройств управления
- Электронные средства управления с дисплеем, датчиком воздуха, датчиком влажности, последовательным портом, цифровыми и аналоговыми выводами
- Датчик температуры воды для микропроцессорных средств управления
- Дистанционный датчик влажности для электронных средств управления
- Встроенное устройство управления для открывания и закрывания приводных жалюзирегуляторов
- Интерфейс питания для подключения параллельно до 4 устройств к одной системе управления
- Заглубленный настенный переключатель скоростей
- Настенный переключатель скоростей
- Настенный переключатель скоростей, термостат и переключатель летнего/зимнего режима работы
- настенный переключатель скоростей и термостат
- Настенный переключатель скоростей, электромеханический термостат и переключатель летнего/зимнего режима работы для 2- или 4-трубных систем с клапанами.
- Заглубленное настенное электронное устройство управления
- Настенные устройства управления с дисплеем, датчиком воздуха, датчиком влажности, последовательным портом, цифровыми и аналоговыми выводами
- Настенное устройство управления для открывания и закрывания приводных жалюзирегуляторов
- Электромеханический камерный термостат
- Электромеханический камерный термостат с переключателем летнего/зимнего режима работы
- Однорядный дополнительный теплообменник для 4-трубной системы (контур горячей воды)
- Пара ножек для закрывания опоры
- Пара ножек для закрывания опоры с передней решеткой
- Прокладки под опору
- Крашеная задняя панель для горизонтально устанавливаемых вентиляторных доводчиков со шкафом
- Крашеная задняя панель для вертикально устанавливаемых вентиляторных доводчиков со шкафом
- 2- или 3-ходовой клапан с двухпозиционным (ВКЛ/ВЫКЛ) электротепловым приводом и комплектом гидравлики
- 2- или 3-ходовые клапаны с модулирующим приводом и комплектом гидравлики
- Вспомогательные лотки
- Насос откачки в комплекте
- Нагревательный элемент с установочным комплектом, релейной коробкой и защитными устройствами, а также теплостойкие решетки
- Решетка для забора воздуха с фильтром или без, выполненная из анодированного алюминия
- Решетка для выпуска воздуха с 2-рядным оребрением, выполненная из анодированного апклиминия
- Прямые соединения для забора и подачи воздуха
- Прямое соединение для отвода воздуха
- Угловые соединения для забора и подачи воздуха
- Напорная камера на входе/выходе воздуха с круговыми хомутами

жалюзи приводные для регулировки забора наружного воздуха

- Жалюзи для ручной регулировки забора наружного воздуха
- Система ионизации BIOXIGEN

ESTRO 1.2					1	ı				2				;	3		
Моторы / колицество скоростей	3x		мин.	средн.	макс.				мин.	средн.	макс.		мин.	средн.	макс.		
Моторы / количество скоростей	6x	К-ВО	1	2	3	4	5	6		отсутствует		1	2	3	4	5	6
Полная холодопроизводительнос	ть (1)	кВт	0,77	0,92	1,15	1,33	1,41	1,54	1,04	1,24	1,54	1,20	1,26	1,52	1,74	1,91	2,12
Общая мощность за счет отвода прямого т	епла (1)	кВт	0,59	0,70	0,87	0,98	1,03	1,11	0,79	0,97	1,20	0,90	0,95	1,14	1,30	1,43	1,58
Расход воды (1)		л/ч	132	158	197	228	242	264	179	213	264	206	216	261	298	328	364
Перепад давлений (1)		кПа	4	5	7	10	11	12	7	9	13	8	8	11	14	17	20
Тепловая мощность (2)		кВт	1,1	1,3	1,6	1,9	2,0	2,2	1,4	1,7	2,1	1,6	1,7	2,0	2,2	2,6	2,8
Перепад давлений (2)		кПа	3	4	6	8	9,00	10	6	8	11	6	7	9	12	14	17
Тепловая мощность (3)		кВт	1,9	2,3	2,7	3,3	3,5	3,8	2,5	3,0	3,7	2,8	2,9	3,5	3,7	4,4	4,9
Расход воды		л/ч	171	199	235	286	303	331	216	263	325	242	257	307	329	409	429
Перепад давлений (3)		кПа	4	6	8	11	12	14	7	10	15	8	8	11	13	13	21
Расход воздуха		м/ч	149	189	231	342	380	450	178	233	319	196	211	271	344	380	450
Diagram in general in a government	3x	Вт	18	21	32				21	28	37		25	36	53		
Входные параметры электросети	6x	Вт	11	15	26	39	49	66		отсутствует		11	15	26	39	49	66
Количество вентиляторов		K-BO			,	1				1					1		
Мощность звука (4)		дБА	30	32	40	48	52	55	37	42	47	32	38	44	49	52	55
Мощность звука (5)		дБА	25	27	35	43	47	50	32	37	42	27	33	39	44	47	50
Тепловая мощность дополнительного теплооб	менника	кВт	1,35	1,50	1,70	2,03	2,13	2,29	1,50	1,70	1,90	1,55	1,56	1,78	2,02	2,13	2,29
Расход воды		л/ч	118	132	149	178	187	201	132	149	167	136	137	156	177	187	201
Перепад давлений		кПа	3	4	4	6	7	8	4	5	6	5	5	7	8	9	10
Полудіононня для роди	44			1	/ 2				1/2				1	/ 2			
Подключения для воды	44			1	/ 2				1/2				1	/ 2			
Of au part a versaversa	стд.	дм3			0	,5				0,5				0	,5		
Объем воды в устройстве	DF	дм3			0	,2				0,2				0	,2		

ESTRO 1.2					4	1					4	M						5		
Моторы / количество	3x			мин.	средн.	макс.				низкий	средн.	ВЫСОКИЙ				мин.	средн.	макс.		
скоростей	6x	нет	1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	4	5	6
Общая мощность охлаждени	ия (1)	кВт	1,40	1,36	1,70	1,96	2,33	2,62	1,41	1,50	1,85	2,24	2,42	2,76	1,40	1,60	2,03	2,42	2,74	2,90
Общая мощность за счет отвода прямого то	епла (1)	кВт	1,00	1,00	1,24	1,42	1,69	1,90	1,00	1,06	1,32	1,60	1,74	1,99	1,04	1,18	1,57	1,88	2,23	2,39
Расход воды (1)		л/ч	240	234	292	337	399	449	242	258	317	384	415	473	239	275	348	415	470	498
Перепад давлений (1)		кПа	7	6	9	12	16	20	9	10	14	20	23	28	6	8	12	16	20	22
Тепловая мощность (2)		кВт	1,7	1,8	2,2	2,6	2,8	3,1	1,7	1,8	2,3	2,7	3,0	3,4	1,9	2,1	2,7	3,2	3,6	3,8
Перепад давлений (2)		кПа	5	5	8	10	13	20	7	8	11	16	18	23	5	6	10	13	16	18
Тепловая мощность (3)		кВт	2,9	3,0	3,7	4,4	4,7	5,2	2,9	3,1	3,8	4,6	5,0	5,7	3,2	3,5	4,6	5,5	6,2	6,5
Расход воды		л/ч	252	267	322	382	409	456	254	270	333	405	439	500	276	308	401	480	541	574
Перепад давлений (3)		кПа	5	6	8	11	13	15	7	8	12	16	19	24	6	7	12	16	20	22
Расход воздуха	асход воздуха			211	271	344	380	450	196	211	271	344	380	450	211	241	341	442	528	579
Входные параметры	Зх	Вт		24	36	53				24	36	53				29	44	57		
электросети	6x	Вт	11	15	26	39	49	66	11	15	26	39	49	66	24	33	45	62	69	82
Количество вентиляторов		к-во			•	1					•	1					2	2		
Мощность звука (4)		дБА	32	40	44	50	52	55	32	40	44	50	52	55	26	35	43	48	50	52
Мощность звука (5)		дБА	27	35	39	45	47	50	27	35	39	45	47	50	21	30	38	43	45	47
Тепловая мощность дополнительного теплообмен	ника	кВт	1,55	1,56	1,78	2,02	2,13	2,29		•	отсут	ствует			1,92	2,06	2,53	2,92	3,37	3,51
Расход воды		л/ч	136	137	156	177	187	201			отсут	ствует			169	181	222	257	295	308
Перепад давлений			5	5	7	8	9	10			отсут	ствует			2	2	3	4	6	6
Политионня пля поли	стд.				1	/ 2					1	/ 2					1	/ 2		
подключения для воды	одключения для воды DF				1	/ 2					отсут	ствует					1	/ 2		
Offi ou portu p votpočotpo	стд.	дм3			0	,7					0	,9					0	,7		
Объем воды в устройстве	DF	дм3			0	,2					отсут	ствует					0	,3		

Температура воды 7-12 °C, температура воздуха 27 ° по сухому термометру, 19 °C по мокрому (относительная влажность 47 %) Температура воды 50 °C, расход воды тот же, что и в режиме охлаждения, температура воздуха на входе 20 °C Температура воздуха 20 °C, температура 20 °C, температу

Уровень звукового давления измерялся в соответствии со стандартами ISO 3741 и ISO 3742

Уровень звукового давления измерялся на расстоянии 1 м при коэффициенте направленности, равном 4

ESTRO 1.2					(6					6	M					7	7		
Marani i / variusarna avanaaraŭ	Зх			мин.	средн.	макс.				мин.	средн.	макс.			мин.	средн.	макс.			
Моторы / количество скоростей	6x	нет	1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	4	5	6
Общая мощность охлаждения (1)		кВт	1,53	1,76	2,38	2,93	3,37	3,61	1,70	1,93	2,64	3,29	3,82	4,11	1,98	2,63	3,51	3,97	4,15	4,40
Общая мощность за счет отвода прямого т	епла (1)	кВт	1,10	1,26	1,70	2,11	2,39	2,55	1,17	1,33	1,83	2,30	2,68	2,90	1,45	2,04	2,75	3,22	3,39	3,63
Расход воды (1)		л/ч	263	302	408	503	579	619	292	331	453	565	655	706	340	451	602	681	712	755
Перепад давлений (1)		кПа	4	5	8	11	15	16	5	7	12	17	23	26	4	7	12	15	16	18
Тепловая мощность (2)		кВт	2,0	2,3	3,1	3,8	4,4	4,7	2,1	2,3	3,2	4,0	4,7	5,1	2,8	3,7	4,8	5,5	5,8	6,1
Перепад давлений (2)		кПа	3	4,00	6,00	9	12	13	4	6	10	14	18	21	4	6	10	12	13	15
Тепловая мощность (3)		кВт	3,4	3,9	5,2	6,5	7,4	8,0	3,5	3,9	5,4	6,8	7,9	8,6	4,8	6,3	8,2	9,5	10,0	10,6
Расход воды		л/ч	299	339	458	567	651	697	302	343	473	595	694	750	424	556	720	837	876	929
Перепад давлений (3)		кПа	3	4	7	11	14	15	4	6	10	14	19	22	5	8	13	16	18	20
Расход воздуха		м/ч	211	241	341	442	528	579	211	241	341	442	528	579	320	450	640	798	855	938
Вуолино попомотон опоутполоти	3x	Вт		29	43	56				29	43	56			37	61	98			
Входные параметры электросети	6x	Вт	24	33	45	62	69	82	24	33	45	62	69	82	39	49	64	84	89	100
Количество вентиляторов		к-во			2	2					2	2					2	2		
Мощность звука (4)		дБА	26	35	42	48	50	52	26	34	42	48	50	52	35	43	52	56	57	60
Мощность звука (5)		дБА	21	30	37	43	45	47	21	29	37	43	45	47	30	38	47	51	52	55
Тепловая мощность дополнительного теплооб	менника	кВт	2,06	2,18	2,68	3,08	3,37	3,51			отсут	ствует			3,21	3,96	4,80	5,34	5,52	5,77
Расход воды		л/ч	180	191	235	270	295	308			отсут	ствует			282	347	421	469	484	506
Перепад давлений		кПа	3	3	4	5	6	7			отсут	ствует			4	6	9	10	11	12
Политический пла	стд.				1	/ 2					1	/ 2					1	/ 2		
подключения для воды	дключения для воды DF				1	/ 2					отсут	ствует					1	/ 2		
Of an part of variations	стд.	дм3			1,	,0					1,	,4					1	,0		
Объем воды в устройстве	DF	дм3			0,	,3					отсут	ствует					0	,4		

ESTRO 1.2					7	M					8	3					8	M		
Mozoni i / vozivio ozno ovono ozoč	Зх		мин.	средн.	макс.				мин.	средн.		макс.			мин.	средн.		макс.		
Моторы / количество скоростей	6x	нет	1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	4	5	6
Общая мощность охлаждения (1)		кВт	2,48	3,39	4,58	5,46	5,77	6,20	2,51	3,27	3,98	4,33	4,93	5,26	2,78	3,70	4,56	4,96	5,77	6,20
Общая мощность за счет отвода прямого т	епла (1)	кВт	1,73	2,37	3,22	3,87	4,09	4,40	1,80	2,45	3,04	3,15	3,90	4,20	1,94	2,59	3,21	3,50	4,09	4,40
Расход воды (1)		л/ч	427	582	785	938	991	1065	431	561	683	743	847	903	2,78 3,70 4,56 4,96 5,77 6 1,94 2,59 3,21 3,50 4,09 4 477 635 782 850 991 1 7 12 18 20 27 3,4 4,5 5,5 6,0 6,9 6 10 14 17 22 5,6 7,5 9,2 10,0 11,6 495 654 805 876 1020 1 6 10 14 16 21 361 497 637 706 855 38 61 98				1065	
Перепад давлений (1)		кПа	6	11	18	24	27	30	5	8	11	12	16	5 6 1 2 3 4 5 93 5,26 2,78 3,70 4,56 4,96 5,77 6 90 4,20 1,94 2,59 3,21 3,50 4,09 4 47 903 477 635 782 850 991 11 16 17 7 12 18 20 27 3 3,4 6,9 3,4 4,5 5,5 6,0 6,9 7 13 14 6 10 14 17 22 1 1,0 11,7 5,6 7,5 9,2 10,0 11,6 1 62 1025 495 654 805 876 1020 1 15 16 6 10 14 16 21 3 55 938 361 497 637 706 855 9 39 100				30		
Тепловая мощность (2)		кВт	3,0	4,1	5,5	6,6	6,9	7,4	3,0	3,9	5,2	5,1	6,4	6,9	3,4	4,5	5,5	6,0	6,9	7,4
Перепад давлений (2)		кПа	5	9	14	20	22	25	4	6	9	10	13	14	6	10	14	17	22	25
Тепловая мощность (3)		кВт	5,1	6,8	9,2	11,0	11,6	12,5	5,0	6,6	8,9	8,6	11,0	11,7	5,6	7,5	9,2	10,0	11,6	12,5
Расход воды		л/ч	444	601	808	965	1020	1096	442	576	777	752	962	1025	495	654	805	876	1020	1096
Перепад давлений (3)		кПа	5	8	14	19	21	24	4	6	10	10	15	16	6	10	14	16	21	24
Расход воздуха		м/ч	320	450	640	798	855	938	361	497	637	706	855	938	6 10 14 17 22 7 5,6 7,5 9,2 10,0 11,6 1 5 495 654 805 876 1020 1 6 10 14 16 21 8 361 497 637 706 855 9 38 61 98 98 9 39 49 64 84 89 9 9 1 2 2 35 43 50 53 57				938	
Dyanii la nanayanni lanayanaani	3x	Вт	37	61	98			0 1096 442 576 777 752 962 1025 495 654 805 876 1020 24 4 6 10 10 15 16 6 10 14 16 21 938 361 497 637 706 855 938 361 497 637 706 855 38 61 98 38 61 98 100 39 49 64 84 89 100 39 49 64 84 89 60 35 43 50 53 57 60 35 43 50 53 57												
Входные параметры электросети	6x	Вт	39	49	64	84	89	100	39	49	64	84	89	100	39	49	64	84	89	100
Количество вентиляторов		K-BO			:	2						2				361 497 637 706 855 93 38 61 98 39 49 64 84 89 10 2 2 2 2 2 2 39 39 39 39 39 39 39 39 39 39 39 39 39 39 30				
Мощность звука (4)		дБА	35	43	52	56	57	60	35	43	50	53	57	60	35	43	50	53	57	60
Мощность звука (5)		дБА	30	38	47	51	52	55	30	38	45	48	52	55	30	38	45	48	52	55
Тепловая мощность дополнительного теплооб	менника	кВт			отсут	ствует			3,6	4,25	4,79	5,05	5,52	5,77			отсут	ствует		
Расход воды		л/ч			отсут	ствует			316	373	420	443	484	506			отсут	ствует		
Перепад давлений		кПа			отсут	ствует			7	9	11	12	14	16			отсут	ствует		
Полупононня пля роль	стд.	"			1	/ 2					1	/2					1	/2		
Подключения для воды	DF	"		отсутствует 1/2 отсутствует																
Officer poster programa	стд.	дм3			1	,9					1	,4					1	,9		
Объем воды в устройстве	DF	дм3			отсут	ствует					0	,4					отсут	ствует		

¹ Температура воды 7-12 °C, температура воздуха 27 ° по сухому термометру, 19 °C по мокрому (относительная влажность 47 %)

² Температура воды 50 °C, расход воды тот же, что и в режиме охлаждения, температура воздуха на входе 20°C

³ Температура воды 70/60 °C, температура воздуха 20°C

⁴ Уровень звукового давления измерялся в соответствии со стандартами ISO 3741 и ISO 3742

⁵ Уровень звукового давления измерялся на расстоянии 1 м при коэффициенте направленности, равном 4

ESTRO 1.2					Ć)					9	M					9	5		
M	3x			мин.	средн.	макс.				мин.	средн.	макс.				мин.	средн.	макс.		
Моторы / количество скоростей	6x	нет	1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	4	5	6
Общая мощность охлаждения (1)		кВт	2,67	3,17	3,87	4,77	5,00	5,33	2,98	3,52	4,37	5,40	5,77	6,20	2,93	3,42	4,19	5,26	5,81	6,27
Общая мощность за счет отвода прямого те	пла (1)	кВт	1,96	2,32	2,92	3,65	3,90	4,20	2,08	2,47	3,07	3,82	4,09	4,40	2,07	2,34	3,00	3,82	4,15	4,49
Расход воды (1)		л/ч	457	544	664	818	857	914	511	605	750	926	991	1065	503	587	719	902	998	1075
Перепад давлений (1)		кПа	5	7	10	14	16	17	8	11	16	24	27	30	7	9	13	19	23	26
Тепловая мощность (2)		кВт	3,6	4,0	4,9	6,0	6,8	7,2	3,6	4,2	5,2	6,5	6,9	7,4	3,7	4,2	5,2	6,6	7,4	8,0
Перепад давлений (2)		кПа	4	6	8	12	13	14	7	9	13	19	22	25	6	7	10	16	19	21
Тепловая мощность (3)		кВт	6,1	6,7	8,3	10,1	11,6	12,4	6,0	7,1	8,8	10,9	11,6	12,5	6,2	7,1	8,7	11,1	12,5	13,5
Расход воды		л/ч	537	588	724	884	1013	1084	529	623	772	953	1020	1096	545	623	765	973	1092	1180
Перепад давлений (3)	ерепад давлений (3)		5	6	9	12	16	18	7	9	13	19	21	24	6	8	11	17	20	23
асход воздуха		м/ч	389	470	605	785	855	938	389	470	605	785	855	938	389	488	615	814	855	938
Руолино поромотри опоутросоти	3x	Вт		47	68	98				47	68	98				52	73	107		
Входные параметры электросети	6x	Вт	39	49	64	84	89	100	39	49	64	84	89	100	43	54	70	92	97	109
Количество вентиляторов		K-BO			2	2					2	2					2	2		
Мощность звука (4)		дБА	39	43	49	56	57	60	39	43	49	56	57	60	39	44	51	58	58	60
Мощность звука (5)		дБА	34	38	44	51	52	55	34	38	44	51	52	55	34	39	46	53	53	55
Тепловая мощность дополнительного теплообм	енника	кВт	3,67	4,04	4,65	5,3	5,52	5,77			отсут	ствует			3,98	4,21	4,78	5,51	6,10	6,38
Расход воды		л/ч	322	355	408	465	484	506			отсут	ствует			350	369	419	483	535	560
Перепад давлений				6	8	10	11	12			отсут	ствует			8	9	11	14	17	19
Полиличи пла води	"			1.	/ 2					1	/ 2					3	/ 4			
Подключения для воды	дключения для воды DF				1.	/ 2					отсут	ствует					3	/ 4		
Объем воды в устройстве	стд. дм				1,	,4					1	,9					1	,7		
Оовем воды в устроистве	DF	дм3			0	,4					отсут	ствует					0	,5		

ESTRO 1.2				10			10M				1	1		
Mozoni / vozumoszno ovonoszně	3x		мин.	средн.	макс.	мин.	средн.	макс.		мин.		средн.		макс.
Моторы / количество скоростей	6x	нет		отсутствует	`		отсутствует		1	2	3	4	5	6
Общая мощность охлаждения (1)		кВт	3,97	5,27	6,71	4,41	5,82	7,38	3,36	4,11	5,31	6,24	7,50	8,02
Общая мощность за счет отвода прямого т	епла (1)	кВт	2,84	3,83	4,91	3,07	4,06	5,17	2,53	3,05	3,94	4,63	5,59	5,96
Расход воды (1)		л/ч	681	904	1.152	756	999	1.267	577	706	911	1071	1287	1075
Перепад давлений (1)		кПа	5	8	12	8	14	21	4	6	10	13	18	26
Тепловая мощность (2)		кВт	4,8	6,2	7,8	5,2	6,7	8,4	4,5	5,2	6,7	7,8	9,3	10,0
Перепад давлений (2)		кПа	4	6	10	7	11	17	4	5	8	11	15	21
Тепловая мощность (3)		кВт	8,1	10,5	13,1	8,6	11,2	14,0	7,8	8,9	11,4	13,2	15,7	16,9
Расход воды		л/ч	707	918	1152	757	983	1232	680	782	1000	1158	1374	1486
Перепад давлений (3)		кПа	4	6	9	6	10	15	4	6	9	11	15	17
Расход воздуха		м/ч	570	771	1.011	670	771	1.011	530	642	846	1022	1280	1393
Pyorus o ropomotos s orogenocota	3x	Вт	86	127	182	86	127	182		109		169		244
Входные параметры электросети	6x	Вт		отсутствует			отсутствует		64	87	123	182	205	227
Количество вентиляторов		к-во		2			2				-	2		
Мощность звука (4)		дБА	47	54	61	47	54	61	43	49	55	60	64	67
Мощность звука (5)		дБА	42	49	56	42	49	56	38	44	50	55	59	52
Тепловая мощность дополнительного теплооб	менника	кВт	5,69	6,83	7,91		отсутствует		5,56	5,50	7,26	7,14	8,96	8,35
Расход воды		л/ч	499	600	694		отсутствует		488	483	637	627	786	733
Перепад давлений		кПа	17	23	30		отсутствует		15	14	23	23	34	30
Полидиония пля роди.	"		3 / 4			3 / 4				3	/ 4			
Подключения для воды	"		1/2			отсутствует				1	/ 2			
Объем воды в устройстве	стд.	дм3		2,1			2,9				2	,1		
оозон воды в устроистве	DF	дм3		0,6			отсутствует				0	,6		

¹ Температура воды 7-12 °C, температура воздуха 27 ° по сухому термометру, 19 °C по мокрому (относительная влажность 47 %)

² Температура воды 50 °C, расход воды тот же, что и в режиме охлаждения, температура воздуха на входе 20 °C

³ Температура воды 70/60 °C, температура воздуха 20°C

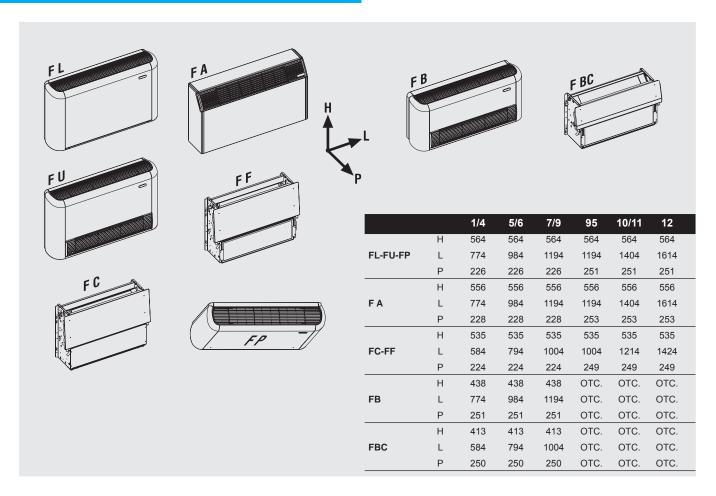
⁴ Уровень звукового давления измерялся в соответствии со стандартами ISO 3741 и ISO 3742

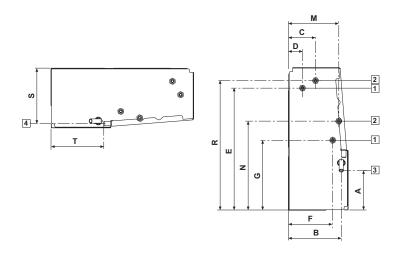
⁵ Уровень звукового давления измерялся на расстоянии 1 м при коэффициенте направленности, равном 4

ESTRO 1.2					11	M				12	
Marani / variusarna avanaaraŭ	Зх			мин.		средн.		макс.	мин.	средн.	макс.
Моторы / количество скоростей	6x	нет	1	2	3	4	5	6		отсутствует	
Общая мощность охлаждения (1)		кВт	3,89	4,66	5,95	6,98	8,40	8,98	6,97	8,77	10,95
Общая мощность за счет отвода прямого тег	ла (1)	кВт	2,75	3,29	4,21	4,95	5,97	6,39	5,12	6,46	8,07
Расход воды (1)		л/ч	668	800	1022	1199	1440	1541	1.196	1.505	1.879
Перепад давлений (1)		кПа	7	9	14	19	26	29	14	22	32
Тепловая мощность (2)		кВт	4,8	5,7	7,2	8,4	10,1	10,8	8,9	11,1	14,5
Перепад давлений (2)		кПа	6	8	12	15	21	24	12	18	26
Тепловая мощность (3)		кВт	8,1	9,6	12,1	14,2	17,0	18,2	15,0	18,8	24,7
Расход воды		л/ч	710	840	1063	1242	1489	1593	1317	1645	2164
Перепад давлений (3)		кПа	6	8	12	15	21	24	13	19	31
Расход воздуха		м/ч	530	642	846	1022	1280	1393	1.010	1.317	1.850
Dyon, u.o. nonoventu eneumocente	Зх	Вт		109		169		244	210	240	310
Входные параметры электросети	6x	Вт	64	87	123	182	205	227		отсутствует	
Количество вентиляторов		к-во				2				3	
Мощность звука (4)		дБА	43	49	55	60	64	67	60	64	71
Мощность звука (5)		дБА	38	44	50	55	59	52	55	59	66
Тепловая мощность дополнительного теплооб	менника	кВт			отсут	ствует			7,85	9,08	10,8
Расход воды		л/ч			отсут	ствует			689	797	948
Перепад давлений		кПа			0	TC.			26	33	45
Полилионня для воли	стд.	"			3	/ 4				3 / 4	
Подключения для воды	DF	"		-	отсут	ствует				1/2	
Облам воли в устройство	стд.	дм3			2	.,9				2,6	
Объем воды в устройстве	DF	дм3			отсут	ствует				0,9	

- 1 Температура воды 7-12 °C, температура воздуха 27 ° по сухому термометру, 19 °C по мокрому (относительная влажность 47 %)
- 2 Температура воды 50 °C, расход воды тот же, что и в режиме охлаждения, температура воздуха на входе 20 °C
- **3** Температура воды 70/60 °C, температура воздуха 20°C
- 4 Уровень звукового давления измерялся в соответствии со стандартами ISO 3741 и ISO 3742
- 5 Уровень звукового давления измерялся на расстоянии 1 м при коэффициенте направленности, равном 4

НОМИНАЛЬНЬ	IE TEXH	1ЧЕСКИЕ	ДАННЫ	E ESTRO	FB/FBC	С НИЗКО	ОПРОФИ.	ПЬНЫМ	КОРПУС	OM	
Модели			1	2	3	4	5	6	7	8	9
Общая мощность охлаждения (1)	Макс. скорость	кВт	1,07	1,33	1,62	1,81	2,25	2,72	3,26	4,03	4,44
Общая мощность за счет отвода прямого тепла (1)	Макс. скорость	кВт	0,81	1,05	1,21	1,35	1,79	1,97	2,61	2,95	3,10
Расход воды		л/ч	184	245	278	291	386	467	559	692	762
Перепад давлений		кПа	7	11	13	13	14	10	11	11	13
Тепловая мощность (2)	Макс. скорость	кВт	1,27	1,67	2,01	2,33	2,97	3,54	4,44	5,23	5,44
Расход воды		л/ч	184	245	278	291	386	467	559	692	762
Перепад давлений		кПа	5	9	10	11	12	8	9	9	10
Объём теплообменника		Л	0,50	0,50	0,50	0,70	0,70	1,00	1,00	1,40	1,40
Подключения для воды		дюймы	1/2 дюйма	1/2 дюйма	1/2 дюйма	1/2 дюйма	1/2 дюйма				
	Макс. скорость	м³/ч	231	319	344	344	442	442	640	706	785
Расход воздуха	средняя скорость	м ³ /ч	189	233	271	271	341	341	450	497	605
	мин. скорость	м³/ч	149	178	211	211	241	241	320	361	470
Напряжение питания		В-ф-Гц					230 / 1 / 50				
Максимальный ток поглощения	Макс. скорость	Α	0,15	0,17	0,24	0,24	0,25	0,25	0,44	0,44	0,44
Максимальная входная мощность	Макс. скорость	Вт	32	37	53	53	57	56	98	98	98
	Макс. скорость	дБ(А)	40	45	49	50	48	47	51	55	56
Мощность звука (4)	средняя скорость	дБ(А)	32	39	44	44	43	43	43	45	51
	мин. скорость	дБ(А)	26	34	38	38	34	35	34	35	45


¹ температура воды 7-12 °C, температура воздуха 27 ° по сухому термометру, 19 °C по мокрому (относительная влажность 47 %)


4 Уровень звукового давления измерялся в соответствии со стандартами ISO 3741 и ISO 3742

MACCA

ESTRO 1.2		1	2	3	4	5	6	7	8	9	95	10	11	12
FL	КГ	19,1	19,1	20,1	20,1	24,8	24,8	30,4	30,4	30,9	31,0	41,3	41,3	50,4
FA	КГ	18,1	18,1	19,1	19,1	23,3	23,3	28,4	28,4	28,9	-	38,8	38,8	47,9
FC	КГ	14,1	14,1	15,1	15,1	18,8	18,8	22,9	22,9	23,4	24,0	31,8	31,8	38,8
FU	ММ	20,1	20,1	21,1	21,1	26,8	26,8	32,4	32,4	32,9	33,0	43,8	43,8	53,0
FB	КГ	15,5	15,5	16,5	16,5	20,9	20,9	25,6	25,6	26,4	-	-	-	-
FBC	КГ	14,5	14,5	15,5	15,5	19,0	20,0	24,0	24,0	24,5	-	-	-	-
FF	КГ	14,1	14,1	15,1	15,1	18,8	18,8	22,9	22,9	23,4	-	31,8	31,8	38,8
FP	КГ	20,1	20,1	21,1	21,1	26,8	26,8	32,4	32,4	32,9	-	43,8	43,8	53,0

		FL-	FA - FU -	FP - FC	- FF			FB - FBC	;	
	1/4	5/6	7/9	95	10/11	12	1/4	5/6	7/9	
Α	149	149	149	155	155	155	125	125	125	
В	198	198	198	220	220	220	197	197	197	
С	99	99	99	120	120	120	OTC.	OTC.	OTC.	
D	51	51	51	48	48	48	38	38	38	
E	458	458	458	497	497	497	371	371	371	
F	163	163	163	185	185	185	212	212	212	
G	263	263	263	259	259	259	228	228	228	
М	187	187	187	195	195	195	OTC.	OTC.	OTC.	
N	335	335	335	348	348	348	OTC.	OTC.	OTC.	
R	486	486	486	478	478	478	OTC.	OTC.	OTC.	
S	208	208	208	234	234	234	237	237	237	
Т	198	198	198	208	208	208	187	187	187	

ФАНКОЙЛЫ FLAT С ЦЕНТРОБЕЖНЫМИ ВЕНТИЛЯТОРАМИ. РАЗНИЦА –В КОНСТРУКЦИИ.

Доводчики **FLAT** производства компании Galletti представляют собой новое поколение вентиляторных доводчиков, разработанное для того, чтобы представлять высшую категорию в своем классе устройств по параметрам работы и по конструкционным характеристикам.

FLAT— инновационная марка в части технологического проектирования. Она сочетает малошумную работу и преимущества эксклюзивного дизайна, которые хорошо подходят как для жилых помещений, так и для помещений общественного пользования.

Концепция, положенная в основу конструкции, позволяет сочетать модели для вертикальной и горизонтальной установки. Наличие 2 вариантов позволяет устанавливать доводчики **FLAT**на полу, на стенах и на потолке.

FLAT L FLAT U настенные, в декоративном корпусе, поток воздуха вертикальный напольные и потолочные, в декоративном корпусе, с вертикальным потоком воздуха и воздухозаборной решеткой с фильтрами.

Уникальность доводчиков **FLAT** заключается как в использовании чрезвычайно высококачественных материалов, что вносит вклад в исключительную надежность изделия, так и в том, что они гарантируют устойчивую работу в течение длительного срока.

> КОРПУС ИЗЫСКАННОЙ КОНСТРУКЦИИ

Цвет RAL9010

Передняя панель из стального листа

Боковые панели и верхняя решетка с крышками на каждой из сторон выполнены из стабилизированного УФ-излучением пластика ABS, что предотвращает выцветание со временем.

Верхняя решетка имеет заслонку и регулируемые жалюзи...

На заслонке имеется микрореле, которое автоматически отключает блок, если она закрыта

Боковые дверцы позволяют осуществлять доступ к пульту управления и в отсек с подключениями к водопроводу и канализации.

Во избежание открывания дверцы могут быть завинчены.

> БАЗОВОЕ УСТРОЙСТВО

Выполнено из листа оцинкованной стали соответствующей толщины, изолировано огнестойкими панелями 1 класса.

Оба варианта могут быть установлены как вертикально, так и горизонтально благодаря двойной системе сбора конденсата и слива.

> ТЕПЛООБМЕННИКИ

Высокоэффективный теплообменник, выполненный из медной трубки с алюминиевым оперением, насаженным на трубки методом терморасширения, оснащен латунным коллектором и клапаном сброса воздуха.

Теплообменник поставляется с подключениями для воды, установленными слева, но его можно развернуть на 180 $^\circ$.

По запросу можно установить дополнительный теплообменник в контуре горячей воды, чтобы можно было установить доводчик FLAT в 4-трубной системе.

> ВЕНТИЛЯТОРНЫЙ МОДУЛЬ

Благодаря новому модулю приводов вентилятора доводчики FLAT занимают верхние позиции в категории внутренних устройств для кондиционирования воздуха в том, что касается низкого уровня шума при работе.

В доводчиках FLAT используются 1 или 2 центробежных вентилятора с двойным участком всасывания, статически и динамически сбалансированные, с лопастями аэродинамической формы, выполненные из антистатического пластика ABS. Они расположены в компактной спиральной камере из пластика ABS, профиль которой обеспечивает малошумное эффективное использование воздушного потока.

Трехскоростной электропривод, непосредственно подключенный к вентиляторам, с постоянно включенным конденсатором и тепловой защитой обмоток, смонтирован на муфтах, служащих гасителями вибрации.

6-скоростные моторы и моторы, не имеющие щеток (с постоянными магнитами и управляющими инверторами) могут быть поставлены по отдельному заказу.

> ВОЗДУШНЫЙ ФИЛЬТР

Сотовый моющийся полипропиленовый воздушный фильтр, установленный на раме из оцинкованного листа, защищен сеткой, которая легко снимается при проведении технического обслуживания. Фильтр можно привинчивать к устройству для большей надежности.

В варианте ${\bf U}$ воздушные фильтры устанавливаются на решетку воздухозабора, расположенную на передней панели шкафа.

> ПУЛЬТЫ УПРАВЛЕНИЯ

Пульты управления выпускаются в качестве вспомогательных устройств для контроля и регулировки температуры посредством микропроцессорной системы, которая автоматически регулирует работу вентиляторного доводчика в соответствии сусловиями окружающей среды.

, Bioxigen^e

BIOXIGEN—это инновационная система ионизации воздуха, которая воздействует на сам воздух, регенерируя и обеззараживая его; она способна не только снижать количество микробов, бактерий, спор, пыльцы, плесени и грибков за счет процесса окисления-восстановления, но также уменьшает вредное воздействие загрязняющих веществ и соединений, находящихся в воздухе и отрицательно влияющих на здоровье.

ДОВОДЧИКИ FLAT могут встраиваться в сети управления ERGO для систем кондиционирования.

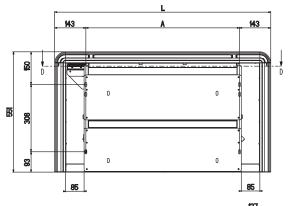
ПОКАЗАТЕЛИ КАЧЕСТВА РАБОТЫ

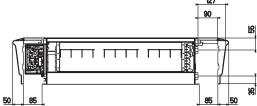
FLAT	T T			10			20			30		40		
Maranu / waruwaarna ayanaaraŭ	Зх		мин.	средн.	макс.	мин.	средн.	макс.	мин.	средн.	макс.	мин.	средн.	макс.
Моторы / количество скоростей	6x	к-во		по запросу			отсутствует	•		по запросу	`		по запросу	
Общая мощность охлаждения (1)		кВт	1300	1460	1930	1390	1740	2270	1480	2040	2710	1690	2320	2920
Общая мощность за счет отвода прямого т	епла (1)	кВт	950	1060	1400	1040	1310	1720	1130	1570	2090	1300	1790	2260
Расход воды (1)		л/ч	224	251	330	239	299	390	255	351	465	290	398	501
Перепад давлений (1)		кПа	5	6	10	6	8	13	3	4	7	4	6	10
Тепловая мощность (2)		кВт	1570	1750	2310	1810	2190	2860	1850	2460	3270	2100	2780	3480
Перепад давлений (2)		кПа	4	5	9	5	7	11	2	4	6	3	5	8
Тепловая мощность (3)		кВт	2640	2950	3890	3070	3710	4840	3150	4160	5510	3580	4700	5860
Расход воды (3)		л/ч	232	259	341	269	326	424	276	365	484	314	413	514
Перепад давлений (3)		кПа	4	5	8	5	7	12	2	4	6	3	5	8
Расход воздуха		м/ч	197	226	305	216	284	378	240	344	467	283	407	520
	Зх	Вт	19	23	33	25	38	57	28	43	57	29	45	60
Максимальная входная мощ- ность	6x	Вт	по запросу			по запросу			по запросу			по запросу		
HOUTE	EC	Вт	6	7	15	7	11	22	6	8	18	7	12	24
Количество вентиляторов		к-во	1		1		2		2					
Уровень звуковой мощности (4)		дБА	32	35	44	38	44	50	30	38	44	32	42	48
Уровень звуковой мощности (5)		дБА	27	30	39	33	39	45	33	39	45	27	37	43
Тепловая мощность дополнитель теплообменника	НОГО	кВт	1540	1660	2010	1640	1880	2240	2020	2420	2950	2220	2670	3110
Расход воды		л/ч	135	146	177	144	165	197	177	213	259	195	234	273
Перепад давлений		кПа	4	4	6	4	5	7	8	11	15	9	13	17
Политична пла поли	стд.	"		1/2			1/2			1/2		1/2		
Подключения для воды	DF	66		1/2			1/2		1/2			1/2		
Of ou position votpovotpo	стд.	дм3		0,78			0,78		1,07			1,07		
Объем воды в устройстве	DF	дм3		0,20			0,20		0,30		0,30			

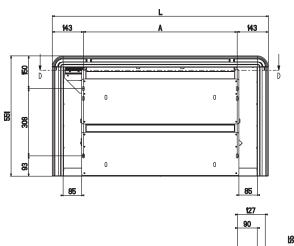
FLAT				50			60		70			
Mozoni i / vozivioozno ovonoszoŭ	3x		мин.	средн.	макс.	мин.	средн.	макс.	мин.	средн.	макс.	
Моторы / количество скоростей	6x	к-во		по запросу			по запросу			по запросу		
Общая мощность охлаждения (1)		кВт	2100	2610	3320	2240	2970	4160	2560	3350	4460	
Общая мощность за счет отвода прямого те	пла (1)	кВт	1660	2060	2600	1800	2390	3370	2080	2750	3700	
Расход воды (1)		л/ч	360	449	569	384	510	714	440	575	765	
Перепад давлений (1)		кПа	3	4	6	3	5	8	4	6	11	
Тепловая мощность (2)		кВт	2670	3200	4030	3100	3970	5470	3490	4440	5870	
Перепад давлений (2)		кПа	2	3	5	2	4	7	3	5	9	
Тепловая мощность (3)		кВт	4570	5430	6820	5370	6810	9350	6030	7610	10050	
Расход воды (3)		л/ч	401	477	598	471	597	820	529	668	882	
Перепад давлений (3)		кПа	3	3	5	3	5	8	4	6	10	
Расход воздуха	м/ч	370	466	593	406	552	800	482	659	911		
	3x	Вт	40	56	75	38	58	88	41	65	96	
Входные параметры электросети	6x	Вт		по запросу			по запросу			по запросу		
	EC	Вт	10	12	16	11	15	35	13	21	49	
Количество вентиляторов		к-во	2			2			2			
Мощность звука (4)		дБА	36	42	50	42	48	56	43	51	58	
Мощность звука (5)		дБА	27	37	43	37	43	51	38	46	53	
Тепловая мощность дополнитель теплообменника	НОГО	кВт	2920	3280	3840	3090	3600	4470	3410	3960	4770	
Расход воды		л/ч	256	287	337	271	316	393	299	347	418	
Перепад давлений		кПа	3	3	4	3	4	5	3	4	6	
Полиличили при	стд.	"		1/2	,		1/2			1/2		
Подключения для воды	DF	"		1/2		1/2			1/2			
Officer position votrovotro	стд.	дм3		1,36		1,36			1,36			
Объем воды в устройстве	DF	дм3		0,40			0,40		0,40			

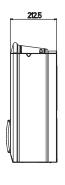
Температура воды 7-12 °C, температура воздуха 27 ° по сухому термометру, 19 °C по мокрому (относительная влажность 47 %) Температура воды 50 °C, расход воды тот же, что и в режиме охлаждения, температура воздуха на входе 20 °C Температура воды 70/60 °C, температура воздуха 20 °C Уровень звукового давления измерялся в соответствии со стандартами ISO 3741 и ISO 3742 Уровень звукового давления измерялся на расстоянии 1 м при коэффициенте направленности, равном 4

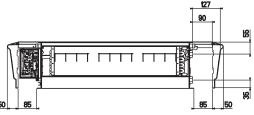
ДОСТУПНЫЕ ВСПОМОГАТЕЛЬНЫЕ ПРИСПОСОБЛЕНИЯ

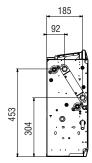

ПУЛЬТЫ УПРАВЛЕНИЯ И ТЕРМОСТАТЫ Переключатель скоростей, на блоке


CI	Переключатель скоростей, на блоке
TIB	Электромеханическое устройство управления, дополненное переключателем скоростей, термостатом и переключателем зимнего/летнего режима работы
MCBE	MYCOMFORT БАЗОВЫЙ
MCME	MYCOMFORT СРЕДНИЙ
MCLE	MYCOMFORT БОЛЬШОЙ
EVO	Управляющий контроллер с дистанционным настенным пультом
KBFLAE	КОМПЛЕКТ для установки на доводчик FLAT (1 датчик воздуха + кронштейн + рамка для встроенного ЖКД-контроллера + комплект для выполнения подключений)
MCSWE	Датчик воды для микропроцессорных устройств управления моделей МҮСОМFORT БАЗОВЫЙ, СРЕДНИЙ, БОЛЬШОЙ, LED503 и EVO
MCSUE	Дистанционный датчик влажности для строенных микропроцессорных устройств управления EVO, MYCOMFORT СРЕДНИЙИ MYCOMFORT БОЛЬШОЙ
LED503	Устройство управления для встроенной установки
TC	Электромеханический термостат для поддержания минимальной температуры воды
KP	Интерфейс питания для подключения параллельно до 4 устройств к одной системе управления
CD	Заглубленный настенный переключатель скоростей
CDE	Настенный переключатель скоростей
TD	Настенное электромеханическое устройство управления, дополненное переключателем скоростей, термостатом и переключателем зимнего/летнего режима работы
TD	Электромеханическое устройство управления, дополненное переключателем скоростей и термостатом
TD4T	Настенное электромеханическое устройство управления, дополненное переключателем скоростей, термостатом и переключателем зимнего/летнего
	режима работы для управления вентиляторным доводчиком, и с клапанами ВКЛ/ВЫКЛ.
	ДОПОЛНИТЕЛЬНЫЕ ТЕПЛООБМЕННИКИ
DF	Однорядный дополнительный теплообменник для 4-трубной системы (контур горячей воды)
	БАЗОВЫЕ ЭЛЕМЕНТЫ И ЭЛЕМЕНТЫ КОРПУСА
ZL	Пара базовых элементов и элементов корпуса
PV	Крашеная задняя панель для горизонтально устанавливаемых вентиляторных доводчиков со шкафом
PH	Крашеная задняя панель для вертикально устанавливаемых вентиляторных доводчиков со шкафом
	КЛАПАНЫ С ПРИВОДОМ
KVK	2- или 3-ходовые клапаны с двухпозиционным (ВКЛ/ВЫКЛ) или модулируемым электродвигателем и комплектом гидравлики для стандартного теплообменника
VKDF	2- или 3-ходовые клапаны c двухпозиционным (ВКЛ/ВЫКЛ) или модулируемым электродвигателем и комплектом гидравлики для теплообменника DF
GIVK	Изолирующее покрытие для корпуса клапана
BV	Вспомогательный поддон для сбора воды для вертикальных вентиляторных доводчиков
ВН	Вспомогательный поддон для сбора воды для горизонтальных вентиляторных доводчиков


ОБЩИЕ РАЗМЕРЫ ЦЕНТРОБЕЖНЫХ ВЕНТИЛЯТОРНЫХ ДОВОДЧИКОВ FLAT






> FLAT U

ТЕПЛООБМЕННИК DF—ПОДКЛЮЧЕНИЯ ПО ВОДЕ

FLAT	10	20	30	40	50	60	70
A MM	534	534	704	704	874	874	874
L	820	820	990	990	1160	1160	1160
Диаметр подключений для воды дюймы-внутренняя газовая резьба	1/2"	1/2"	1/2"	1/2"	1/2"	1/2"	1/2"
Диаметр дренажного патрубка для вертикального монтажа, мм	16	16	16	16	16	16	16
диаметр дренажного патрубка для горизонтального монтажа, мм	17	17	17	17	17	17	17
Вес нетто варианта L,	17,5	17,5	21,5	21,5	24	24	24
Вес нетто варианта U, кг	18,5	18,5	23	23	25,5	25,5	25,5
	1	1	ı	J		1	l

2X1 ОТ GALLETTI—ВНУТРЕННИЕ УСТРОЙСТВА ДЛЯ СИСТЕМ КОНДИЦИОНИРОВАНИЯ ВОЗДУХА: ЭВОЛЮЦИЯ КОНДИЦИОНИРОВАНИЯ ВОЗДУХА

Только те, кто проектировал и изготавливал устройства обогрева и кондиционирования воздуха на протяжении 45 лет, могли задумать устройство, которое превзойдет все границы существующих технологий.

2X1—это внутреннее устройство для систем жидкостного охлаждения и обогрева, в котором два режима работы объединены в ЕДИНЫЙ БЛОК.

ГРЕЙТЕСЬ ТАК, КАК ВАМ УДОБНО!

Эксклюзивный патент позволяет устройству 2x1 поддерживать ощущение благосостояния, не применяя вентиляцию, только за счет конвекционного обогрева, что дает гораздо большее ощущение комфорта.

2x1 OT GALLETTI: ГРЕЙТЕСЬ ИМЕННО ТАК, КАК ВАМ ВСЕГДА ХОТЕЛОСЬ.

РАДИАТОРНАЯ СИСТЕМА 2X1 OT GALLETTI

- Заданная температура в помещении достигается быстрее благодаря тому,
 что вентилятор работает на сверхнизкой скорости.
- > Охлаждение и осушение воздуха сочетаются в одном блоке
- Высокая эффективность при низкой температуре воды: снижение эксплуатационных затрат

СИСТЕМА ВЕНТИЛЯТОРНЫХ ДОВОДЧИКОВ 2X1 ОТ GALLETTI

- > Вентилятор выключен = нет шума в режиме обогрева
- > Согревает воздух за счет естественной конвекции
- > Компактные размеры (17 см) и стильное исполнение
- > Может устанавливаться на 4-трубные системы

СИСТЕМА ПОЛОВ С ПОДОГРЕВОМ 2X1 ОТ GALLETTI

- > Летом высушивает воздух
- > Быстрее достигает нужной температуры
- > Независимая регулировка температуры в каждом помещении
- > Также фильтрует воздух зимой (вентилятор работает на сверхнизкой скорости)
- > Проще в установке и представляет собой единую систему

СИСТЕМА ОБОГРЕВАТЕЛЕЙ-ИЗЛУЧАТЕЛЕЙ 2X1 ОТ GALLETTI

- О стенки устройства нельзя обжечься, так как нагрев в устройстве 2x1 происходит за счет конвекции
- Центробежный вентилятор новейшей концепции преодолевает ограничения тангенциальных вентиляторов, обеспечивая эффективное и удобное распределение холодного воздуха в летнее время.

живите в удобной прохладе!

Летом устройство 2x1 предлагает преимущества лучших вентиляторных доводчиков, гарантируя вентиляционное охлаждение, малый уровень шума и профильтрованный осушенный воздух.

ЭКСКЛЮЗИВНОСТЬ ПАТЕНТА

2X1 ОТ GALLETTI: ПРЕИМУЩЕСТВА КОНВЕКЦИОННОГО ОБОГРЕВА

- Благодаря эксклюзивному патенту и новому двойному теплообменнику достаточно одного движения руки, чтобы превратить Galletti 2 из летнего кондиционера в зимний конвекционный обогреватель, работающий на принципе естественной конвекции.
- В устройстве 2х1 воздух нагревается благодаря второму оребренному теплообменнику и естественным образом подается в помещение за счёт естественной тяги.

ЗИМОЙ УСТРОЙСТВО 2X1 GALLETTI ОБЕСПЕЧИВАЕТ:

> Качество воздуха

Фильтрация внутреннего воздуха и использование системы Bioxigen позволяют устройству 2х1 очищать и ионизировать воздух, устраняя пыль, микробов, бактерий, споры, пыльцу, пылевых клещей, грибки и плесень, а также неприятные запахи химического и органического происхождения.

> Комфорт и экономия

Возможность использования воды низкой температуры позволяет вам задействовать такие источники экономии, как котловой конденсат, тепловые насосы и геотермальные системы, что позволит значительно снизить эксплуатационные расходы. Благодаря низкой температуре нагретого воздуха не происходит его высушивания, поэтому стены не чернеют.

> Быстро достигается нужная температура

По сравнению с обычными радиаторами, температура поднимается значительно быстрее благодаря крайне низкой начальной скорости работы.

Безопасный и простой монтаж
 Отсутствие риска случайного ожога и меньший вес по сравнению с обычным радиатором облегчают и ускоряют установку.

ОБОГРЕВ

3 рабочих режима, 5 уровней выделения тепла:

- > 1й уровень конвекционный обогрев, вентилятор выключен, заслонка открыта. Термостат контролирует температуру в помещении, открывая и закрывая клапан (устанавливается дополнительно), который прерывает поток воды. Устройство можно мгновенно отключить, закрыв заслонку.
- 2й уровень конвекционный обогрев, вентилятор работает наСВЕРХНИЗКОЙ СКОРОСТИ, заслонка открыта. Термостат контролирует температуру в помещении, воздействуя на вентилятор, а также открывая и закрывая клапан (устанавливается дополнительно), который прерывает поток воды.
- > Зй /4й /5й уровни режим вентиляторного доводчика, скорость вентилятора низкая, средняя или высокая, заслонка закрыта. Термостат контролирует температуру в помещении, воздействуя на вентилятор, а также открывая и закрывая клапан (устанавливается дополнительно), который прерывает поток воды.

ОХЛАЖДЕНИЕ

1 режим работы, 4 уровня теплоизлучения

- 1й уровень режим вентиляторного доводчика, скорость вентилятора ОЧЕНЬ НИЗКАЯ, заслонка закрыта.
 - Термостат контролирует температуру в помещении, воздействуя на вентилятор, а также открывая и закрывая клапан (устанавливается дополнительно), который прерывает поток воды.
- Зй/4й/5й уровни: режим вентиляторного доводчика, скорость вентилятора низкая, средняя или высокая, заслонка закрыта.
 - Термостат контролирует температуру в помещении, воздействуя на вентилятор, а также открывая и закрывая клапан (устанавливается дополнительно), который прерывает поток воды.

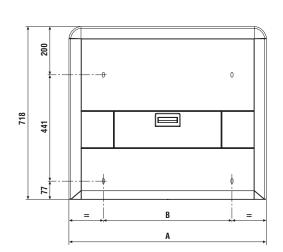
				НОМИНАЛЬ	НЫЕ ТЕХН	НИЧЕСК	ИЕ ДАННЬ	olE				
				ОХЛ	ІАЖДЕНИЕ				ОБОГР	PEB		
			Вода 7/12 °C,	воздух 27 °С сухо	й термометр, 1	9 °С мокры	й термометр)	Вода 7	5/65 °C, E	воздух 20°C)		
модель	Вентиляция	Расход воздуха	Общая тепловая мощность	Тепловая мощность за счет прямого отвода тепла	Осуш. способность	Расход воды	Перепад давлений	Тепловая мощность	Расход воды	Перепад давлений	Входные параметры электросети	Мощность звука (4)
		м3/ч	кВт	кВт	л/ч	л/ч	кПа	кВт	л/ч	кПа	Ватт	дБА
	конвекция	-	-	-	-	-	-	0,93	80	0,5	-	-
404	сверхнизкая	80	0,56	0,39	0,24	95	1,5	1,74	80	0,5	11	27
124	минимальная	110	0,74	0,52	0,32	125	2,0	1,86	165	2,5	12	29
	средняя	135	0,90	0,64	0,37	155	3,0	2,24	195	3,0	17	34
	максимальная	170	1,17	0,95	0,32	200	5,0	2,89	255	3,5	23	40
	конвекция	-	-	-	-	-	-	1,30	115	1,1	-	-
	сверхнизкая	100	0,70	0,49	0,30	120	1,2	1,95	115	1,1	12	31
224	минимальная	135	0,87	0,64	0,34	150	1,9	2,30	205	3,0	14	33
	средняя	170	1,14	0,80	0,49	190	2,6	2,85	250	4,5	20	37
	максимальная	225	1,62	1,34	0,40	275	4,5	3,54	310	6,5	27	43
	конвекция	-	-	-	-	-	-	1,49	130	1,1	-	-
	сверхнизкая	140	1,04	0,70	0,48	175	2,7	2,74	130	1,1	22	32
324	минимальная	200	1,48	1,00	0,68	250	5,0	3,38	295	6,0	23	34
- -	средняя	250	1,82	1,24	0,84	305	7,0	4,13	365	9,0	28	39
	максимальная	340	2,38	1,82	0,80	410	13,5	5,10	450	13,0	37	46
	конвекция	-	-	-	-	-	-	1,49	130	1,1	-	-
	сверхнизкая	175	1,28	0,89	0,56	225	4,0	3,34	130	1,1	22	33
424	минимальная	250	1,82	1,17	0,94	305	7,0	4,13	365	9,0	25	34
	средняя	310	2,17	1,50	0,97	375	10,0	5,00	440	13,0	31	40
	максимальная	420	3,13	2,32	1,17	540	20,0	5,89	520	18,0	42	47

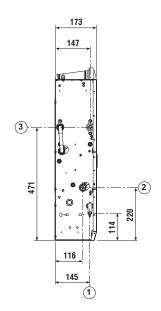
Номинальная тепловая мощность относится к следующим условиям:

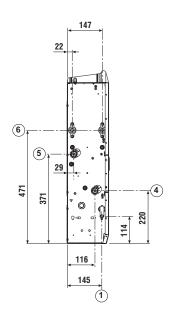
- температура на входе 75 °C
- температура на выходе 65 °C
- температура воздуха (сухой термометр) 20 °C

Номинальная мощность охлаждения относится к следующим условиям:

- температура на входе 7 °C
- температура на выходе 12 °C
- температура воздуха (сухой термометр) 27 °C
- температура воздуха (мокрый термометр) 19 °C


ВСПОМОГАТЕЛЬНЫЕ ПРИСПОСОБЛЕНИЯ


- > Микропроцессорный пульт для автоматического управления устройством и подключения к системе управления ERGO
- > Базовые элементы и элементы корпуса, которые скрывают трубы, идущие от пола вверх
- Клапаны регулировки потока воды
- > Система ионизации и очистки BIOXIGEN
- > Электронный датчик температуры воды
- > Дополнительный поддон для сбора капельных утечек воды
- > Крашеная задняя панель
- > 4-скоростной переключатель



2Х1 ОБЩИЕ РАЗМЕРЫ

- 1 Сливной патрубок Ø 17 мм
- 2 Подача воды, 2-трубная система, Ø 1/2" внутренняя газовая резьба
- 3 Отвод воды, 2-трубная система, Ø 1/2" внутренняя газовая резьба
- 4 Подача охлаждённой воды, 4-трубная система, Ø 1/2" внутренняя газовая резьба
- 5 Отвод охлаждённой воды, 4-трубная система, Ø 1/2" внутренняя газовая резьба
- 6 Подключения контура горячей воды, Ø 1/2" внутренняя газовая резьба

A	В	Bec	Длина	Высота Глубина		а Тепл	овая мо	10 H ₂ O	
Galletti							охл.	обогр.	Всего
94							TO	TO	
	ММ	ММ	кг	ММ	ММ	ММ	дм ³	дм ³	дм ³
124	820	534	21	820	712	172	0,49	0,73	1,22
224	990	704	25	990	712	172	0,65	0,97	1,62
324	1160	874	29	1160	712	172	0,81	1,20	2,01
424	1160	874	29	1160	712	172	0,81	1,20	2,01

ФАНКОЙЛЫ С ВОДЯНОЙ КАССЕТОЙ ІМС

Новый ассортимент жидкостных устройство охлаждения и обогрева **IWC** — результат опыта компании Galletti в проектировании и изготовлении внутренних устройств такого типа и инновационных систем, а также результат применения новых концепций регулирования.

Устройства **IWC** от компании Galletti не имеют себе равных по качеству и тщательности изготовления всех комплектующих. Ассортимент включает шесть моделей с 1 теплообменником для 2- и 4-трубных систем с проводным контроллером или инфракрасным пультом дистанционного управления, а также 2 модели с 2 теплообменниками для 4-трубных систем.

За счет использования двух 3-ходовых отклоняющих клапанов с 4 соединениями (комплект (4X2), управляемых системой регулировки, доводчики с 1 теплообменником могут использоваться в 4-трубных системах, что дает очевидные экономические и рабочие преимущества.

В сочетании с контроллерами **MYCOMFORT** доводчики **IWC** могут встраиваться в сети управления кондиционированием воздуха **ERGO** и работать с управлением по температуре и влажности.

Доводчики **IWC** могут также оснащаться системой **Bioxigen** для полноценной очисти внутреннего устройства и воздуха, попадающего в помещения.

КОНСТРУКТИВНЫЕ ОСОБЕННОСТИ

- Несущая конструкция устройства выполнена из оцинкованной стали, изолирована внутри и снаружи материалом, не пропускающим тепла и звука.
 Внутри находятся основные комплектующие (теплообменник, модуль привода вентилятора и насос слива конденсата), которые предназначены для впуска наружного воздуха внутрь и распределения его по прилегающему помещению.
- Статически и динамически сбалансированный центробежный вентилятор с лопастями обратной кривизны, непосредственно надетыми на электропривод.
 Лопасти имеют конструкцию, позволяющую им работать почти бесшумно, а также способны эффективно работать на очень малой скорости.
- Электропривод 230 В с тепловой защитой обмоток. Имеет 4 скорости, что позволяет оптимизировать шум и энергопотребление при работе установки. По отдельной заявке можно приобрести бесщеточные двигатели (с постоянными магнитами и управляющим инвертором).
- Высокоэффективный теплообменник из меди с алюминиевым оребрением, в комплект которого входят клапаны для сброса воздуха.
- Пластиковый поддон для сбора капельных утечек воды, вмонтированный непосредственно в полистирольную конструкцию для распределения воздуха.
- Насос откачки конденсата с полезным напором 250 мм, с поплавком и двухуровневым реле для регулирования уровня конденсата в поддоне, а также с системой управления на случай аварийной ситуации. Рабочая микросхема обеспечивает снижение скорости вентилятора во время работы насоса (поплавок срабатывает и включает реле на первом уровне), чтобы конденсат легче проходил сквозь оребрение теплообменника.
- Электрические комплектующие размещаются в наружном корпусе и включают электронную плату для управления блоком и реле для работы насоса. Корпус

расположен на стороне подключений для воды, что снижает потребность в зазоре для установки устройства.

- Пластиковый поддон для сбора капельных утечек воды, вмонтированный непосредственно в полистирольную конструкцию для распределения воздуха.
- Пластины воздухозабора и выпуска воздуха, выполненные из полистирола и окрашенные в цвет RAL 9001, в них из пенополимера высокой плотности выполнены проходы для воздуха с решетками, моющимся полипропиленовым фильтром и регулируемым выпускным оребрением. В панелях для установок с проводным контроллером положение оребрения на выходе регулируется вручную, а в панелях для устройств с ИК-пультом управления перемещение ребер осуществляется с помощью привода. Кроме того, комплект светодиодов на передней панели указывает на рабочее состояние блока.

ОБЯЗАТЕЛЬНЫЕ ВСПОМОГАТЕЛЬНЫЕ УСТРОЙСТВА

Комплект клапанов для регулирования потока жидкости, с управлением от термостата, с возможностью выбора 2- и 3-ходовых клапанов/соединений и комплекта 4x2 с приводами дискретного или модулированного типа.

ТАБЛИЦА СОЕДИНЕНИЙ ДЛЯ ВСПОМОГАТЕЛЬНЫХ УСТРОЙСТВ

ИМЕЮЩИЕСЯ ПРИНАДЛЕЖНОСТИ	Модель с одним теплообменником и выносным пультом управления (кабель управления)	Модель с одним теплообменником и инфракрасным пультом дистанционного управления	Модель с двумя теплообменниками и выносным пультом управления (кабель управления)
Панель управления LED 503	Χ		X
Панель управления MYCOMFORT BASE	Χ		Х
Панель управления MYCOMFORT MEDIUM	Χ		X
Панель управления MYCOMFORT LARGE	Χ		X
Датчик измерения температуры воды	Χ		Х
Комплект 2-ходовой клапан с приводом 230V ON/OFF	Χ	Χ	X
Комплект 2-ходовой клапан с приводом 24V ON/OFF	Χ	Χ	X
Комплект 2-ходовой клапан с приводом с модуляционным режимом	Χ	Χ	X
Комплект 3-ходовой клапан /4 подключения с приводом ON/OFF	Χ	Χ	X
Комплект 3-ходовой клапан /4 подключения с приводом 24V ON/OFF	Χ	Χ	X
Комплект 3-ходовой клапан /4 подключения с приводом с модуляционным режимом (24V, сигнал 0-10	v) X	Χ	X
4X2 комплект 3-ходовой клапан /4 подключения с приводом 24V ON/OFF	Χ	Χ	
4X2 комплект 3-ходовой клапан /4 подключения с приводом 230V ON/OFF	Х	Χ	

СИЛЬНАЯ СТОРОНА/ПРЕИМУЩЕСТВО ДЛЯ ЗАКАЗЧИКА

Фирменные технологии такого европейского лидера в производстве вентиляторных доводчиков, как Galletti, и многолетний опыт изготовления и эксплуатации таких устройств привели к тому, что рабочие скорости новых устройств распределяются по-новому, в соответствии с рыночными стандартами.

По сути, тот уровень шума, который достигается на минимальной скорости (по этим параметрам наши устройства — лучшие на рынке), гарантирует отличное обслуживание и качество работы в летнем режиме.

Напротив, при обогреве, особенно при низкой температуре воды в теплообменнике, становится весьма реальной угроза стратификации или «неправильной» диффузии воздуха.

Поэтому выбор дополнительной скорости позволяет улучшить компромисс между шумом и созданием приятной температуры в окружающей среде.

СИЛЬНАЯ СТОРОНА/ПРЕИМУЩЕСТВО ДЛЯ ЗАКАЗЧИКА

Много лет компания Galletti использует инновационный швейцарский патент «BIOXIGEN» для внутренних устройств жидкостного отопления и обогрева.

Этот уникальный эксклюзивный низковольтный ионизатор благодаря способу эксплуатации не только уменьшает количество бактерий и вредных микробов, но также обеззараживает внутренний блок системы 24 часа в сутки, очищая всю системную поверхность.

Технология Bioxigen, таким образом, особо пригодна для таких заказчиков, как:

- медицинские центры и клиники
- спортивные объекты
- офисы
- объекты общественного назначения

www.bioxigen.com

ТАБЛИЦА РАБОЧИХ ПОКАЗАТЕЛЕЙ

Модель	AL LOVE	32					42				E	С с 1 теплообменником 52			
Скорость		1*	2	3	4	1*	2	3	4	1 *	2	3	4		
Общая мошность охлаждения (1)	кВт	1.24	2.15	2.35	2.60	1.70	3.50	4,00	4.60	2.46	3.80	4.42	5.06		
	кВт	0.92	1,78	2,00	2,23	1,15	2.63	3,06	3,56	1,82	2.87	3,33	3.80		
Общая мощность за счет отвода прямого тепла (1)		213	<u> </u>	404	445	291	-,	<u> </u>	789	422	-,	758	-,		
Расход воды (1)	л/ч		368				600	687			653		869		
Перепад давлений (1)	кПа	3	8	9	11	3	11	14	17	7	14	18	23		
Тепловая мощность (2)	кВт	1,55	2,83	3,11	3,49	1,87	4,35	4,85	5,70	3,35	5,33	6,14	6,75		
Перепад давлений (2)	кПа	3	7	8,00	10	3	10	13	17	6	14	18	23		
Тепловая мощность (3)	кВт	2,02	3,72	4,09	4,61	2,42	5,7	6,32	7,46	4,46	7,11	8,17	8,91		
Расход воды (3)	л/ч	175	323	355	400	210	495	549	648	387	617	710	774		
Перепад давлений (3)	кПа	2	6	7	8	2	7	9	12	5	12	16	18		
Объем воды в устройстве	дм3		0,	43			0,	86			0,	86			
Расход воздуха	м/ч	180	400	460	520	200	530	630	750	370	630	760	880		
Входные параметры электросети	Вт	17	40	50	60	20	60	70	90	26	71	85	98		
Мощность звука (4)	дБА	30	41	44	46	32	48	51	55	41	53	57	61		
Мощность звука (5)	дБА	25	36	39	41	27	43	46	50	36	48	52	56		
Подключения для воды	дюймы		1.	/ 2			1	/ 2			1	/ 2			
размеры устройства (В х Д х Ш)	ММ		273 x 57	75 x 575			273 x 5	75 x 575			273 x 5	75 x 575			
размеры панели (В х Д х Ш)	мм		64 x 73	0 x 730			64 x 73	0 x 730			64 x 73	0 x 730			
Номинальные параме	тры и т	ехниче	ские да	анные в	ентиля	торны	х довод	цчиков	WC c 1	теплос	бменн	иком			
Модель			6	2			8	2			10)2			
Скорость		1	2	3 *	4	1	2	3	4 *	1	2	3 *	4		
Общая мощность охлаждения (1)	кВт	4,20	5,00	5,40	6,00	5,50	6,50	8,00	9,10	6,23	8,09	8,90	9,92		
Общая мощность за счет отвода прямого тепла (1)	кВт	3,13	3,70	3,99	4,40	4,11	5,08	6,10	6,84	4,69	6,17	6,87	7,71		
Расход воды (1)	л/ч	720	859	930	1.029	944	1.116	1.373	1.561	1.070	1.389	1.529	1.702		
Перепад давлений (1)	кПа	16	22	25	30	21	28	41	51	27	42	50	60		
				i			i		10.10	7.34	9.53	10.59	11,69		
Тепловая мощность (2)	кВт	5,40	6,40	7,10	7,70	6,28	8,52	9,42	10,19	1,04					
Тепловая мощность (2) Перепад давлений (2)	кВт кПа	5,40 15	6,40 21	7,10 25	7,70 30	6,28 21	8,52 29	9,42 39	48	26	42	49	60		
,		-,	<u> </u>				<u> </u>					49	60 15,11		
Перепад давлений (2)	кПа	15	21	25	30	21	29	39	48	26	42				
Перепад давлений (2) Тепловая мощность (3)	кПа кВт	15 7,08	21 8,39	25 9,33	30 10,08	21 8,14	29 11,24	39 12,26	48 13,18	26 9,52	42 12,34	13,73	15,11		
Перепад давлений (2) Тепловая мощность (3) Расход воды (3)	кПа кВт л/ч	15 7,08 615	21 8,39 729	25 9,33 810 19	30 10,08 875	21 8,14 707	29 11,24 976 21	39 12,26 1.065	48 13,18 1.145	26 9,52 827	42 12,34 1.072	13,73 1.192 31	15,11		
Перепад давлений (2) Тепловая мощность (3) Расход воды (3) Перепад давлений (3)	кПа кВт л/ч кПа	15 7,08 615	21 8,39 729 16	25 9,33 810 19	30 10,08 875	21 8,14 707	29 11,24 976 21	39 12,26 1.065 24	48 13,18 1.145	26 9,52 827	42 12,34 1.072 26	13,73 1.192 31	15,11		
Перепад давлений (2) Тепловая мощность (3) Расход воды (3) Перепад давлений (3) Объем воды в устройстве	кПа кВт л/ч кПа дм3	15 7,08 615 12	21 8,39 729 16	25 9,33 810 19	30 10,08 875 22	21 8,14 707 12	29 11,24 976 21	39 12,26 1.065 24	48 13,18 1.145 27	26 9,52 827 16	42 12,34 1.072 26	13,73 1.192 31	15,11 1.312 37		
Перепад давлений (2) Тепловая мощность (3) Расход воды (3) Перепад давлений (3) Объем воды в устройстве Расход воздуха Входные параметры электросети	кПа кВт л/ч кПа дм3 м/ч	15 7,08 615 12 850	21 8,39 729 16 1,060	25 9,33 810 19 00 1.160	30 10,08 875 22 1.300	21 8,14 707 12 830	29 11,24 976 21 1,	39 12,26 1.065 24 50 1.270	48 13,18 1.145 27 1.400	26 9,52 827 16	42 12,34 1.072 26 1,700	13,73 1.192 31 50 1.980	15,11 1.312 37 2.300		
Перепад давлений (2) Тепловая мощность (3) Расход воды (3) Перепад давлений (3) Объем воды в устройстве Расход воздуха Входные параметры электросети Мощность звука (4)	кПа кВт л/ч кПа дм3 м/ч Вт	15 7,08 615 12 850 80	21 8,39 729 16 1,060 90	25 9,33 810 19 00 1.160 100	30 10,08 875 22 1.300 120	21 8,14 707 12 830 80	29 11,24 976 21 1, 190	39 12,26 1.065 24 50 1.270 120	48 13,18 1.145 27 1.400 140	26 9,52 827 16 1.200 110	42 12,34 1.072 26 1,700 130	13,73 1.192 31 50 1.980 155	15,11 1.312 37 2.300 180		
Перепад давлений (2) Тепловая мощность (3) Расход воды (3) Перепад давлений (3) Объем воды в устройстве Расход воздуха Входные параметры электросети Мощность звука (4) Мощность звука (5)	кПа кВт л/ч кПа дм3 м/ч Вт дБА	15 7,08 615 12 850 80 43	21 8,39 729 16 1,060 90 48	25 9,33 810 19 00 1.160 100 49 44	30 10,08 875 22 1.300 120 51	21 8,14 707 12 830 80 37	29 11,24 976 21 1, 190 100 46	39 12,26 1.065 24 50 1.270 120 50 45	48 13,18 1.145 27 1.400 140 53	26 9,52 827 16 1.200 110 43	42 12,34 1.072 26 1,700 130 49	13,73 1.192 31 50 1.980 155 53 48	15,11 1.312 37 2.300 180 57		
Перепад давлений (2) Тепловая мощность (3) Расход воды (3) Перепад давлений (3) Объем воды в устройстве Расход воздуха Входные параметры электросети Мощность звука (4)	кПа кВт л/ч кПа дм3 м/ч Вт	15 7,08 615 12 850 80 43	21 8,39 729 16 1,060 90 48 43	25 9,33 810 19 00 1.160 100 49 44 / 4	30 10,08 875 22 1.300 120 51	21 8,14 707 12 830 80 37	29 11,24 976 21 1, 190 100 46 41	39 12,26 1.065 24 50 1.270 120 50 45	48 13,18 1.145 27 1.400 140 53	26 9,52 827 16 1.200 110 43 38	42 12,34 1.072 26 1, 1.700 130 49	13,73 1.192 31 50 1.980 155 53 48	15,11 1.312 37 2.300 180 57		

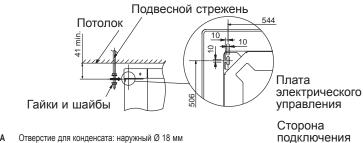
Номинальные параметры и технические данные вентиляторных доводчиков IWC с 2 теплообменниками									
Модель			3	4			4	4	
Скорость		1 *	2	3	4	1*	2	3	4
Общая мощность охлаждения (1)	кВт	1,03	1,72	1,88	2,05	1,52	2,88	3,28	3,76
Общая мощность за счет отвода прямого тепла (1)	кВт	0,81	1,51	1,66	1,82	1,07	2,27	2,60	3,00
Расход воды (1)	л/ч	177	295	323	351	295	494	563	645
Перепад давлений (1)	кПа	3	8	9	11	8	11	13	17
Тепловая мощность (3)	кВт	1,1	1,78	1,95	2,2	1,48	2,87	3,14	3,76
Расход воды (3)	л/ч	96	155	169	191	129	249	273	327
Перепад давлений (3)	кПа	11	25	29	36	7	22	26	36
Объем воды в устройстве	дм3		0,	43			0,	86	
Расход воздуха	м/ч	180	400	460	520	200	530	630	750
Входные параметры электросети	Вт	17	40	50	60	20	60	70	90
Мощность звука (4)	дБА	30	41	44	46	32	48	51	55
Мощность звука (5)	дБА	25	36	39	41	27	43	46	50
Подключения змеевика охлаждения	дюймы		1	/ 2			1	/ 2	
Подключения змеевика обогрева	дюймы	мы 1 / 2				1	/ 2		
размеры устройства (В х Д х Ш)	ММ	м 273 x 575 x 575 273 x 575 x 575				75 x 575			
размеры панели (В х Д х Ш)	ММ	м 64 x 730 x 730 64 x 730 x 73					0 x 730		

IWC 2 ТРУБЫ — ПРИМЕЧАНИЯ

- 1 =температура воды 7/12°C, температура воздуха на сухом термометре 27 °C, температура воздуха на влажном термометре 19 °C
- 2 = температура воды на входе 50 °C, расход воды тот же, что и в режиме охлаждения, температура воздуха на входе 20 °C
- 3 = температура воды 60/50 °C, температура воздуха 20 °C 4 = мощность звука удовлетворяет ISO 3741 и ISO 3742
- 5 = Уровень звукового давления измерялся на расстоянии 1 м при коэффициенте направленности, равном 4
- * Возможна дополнительная скорость. С июля 2012 Galletti SpA участвует в программе сертификации **EUROVENT**. Продукцию, участвующую в программе, можно увидеть по адресу www.eurovent-certification.com

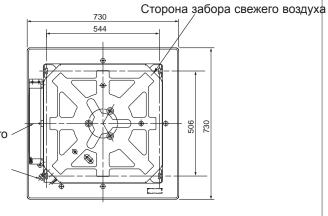
- 1 =температура воды 7/12°C, температура воздуха на сухом термометре 27 °C, температура воздуха на влажном
- 3 = температура воды 70-60°C, температура воздуха 20 °C
- 4 = мощность звука удовлетворяет ISO 3741 и ISO 3742
- 5= Уровень звукового давления измерялся на расстоянии 1 м при коэффициенте направленности, равном 4
- * Возможна дополнительная скорость. С июля 2012 Galletti SpA участвует в программе сертификации EUROVENT. Продукцию, участвующую в программе, можно увидеть по адресу www.eurovent-certification.com

22


ОБЩИЕ РАЗМЕРЫ

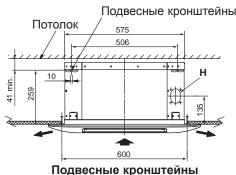
Вес нетто

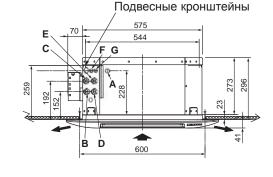
Модель	IWC 3	IWC 4-5
Блок	18 кг	20 кг
Панель/решетка в сборе	2,5 кг	2,5 кг

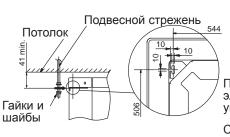


Отверстие для конденсата: наружный Ø 18 мм

Подача воды: 1/2 дюйма внутренняя газовая резьба Отвод воды: 1/2 дюйма внутренняя газовая резьба


Сброс воздуха из змеевика


забор свежего воздуха: Ø 70 мм



IWC 03-04, 4 ТРУБЫ

воды

Плата электрического управления

Сторона подключения воды

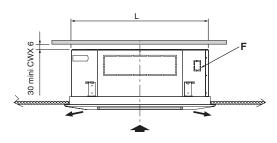
Сторона забора свежего воздуха 544 909 730

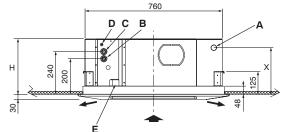
Отверстие для конденсата: Наружный диаметр 18 мм

- Вход воды в основной теплообменник: 1/2 дюйма внутренняя газовая резьба
- Выход воды из основного теплообменника: 1/2 дюйма внутренняя газовая резьба
- Вход воды в дополнительный теплообменник: 1/2 дюйма внутренняя газовая резьба Выход воды из дополнительного теплообменника: 1/2 дюйма внутренняя газовая резьба
- Сброс воздуха из основного теплообменника
- Сброс воздуха из дополнительного теплообменника
- Забор наружного воздуха: диаметр 70 мм

Вес нетто

Модель	IWC 3	IWC 4-5
Блок	18 кг	20 кг
Панель/решетка в сборе	2,5 кг	2,5 кг


ОБЩИЕ РАЗМЕРЫ


IWC 06-08-10, 2 ТРУБЫ

30 мин. IWC6

Вес нетто

Модель	IWC 6	IWC 8-10
Блок	23 кг	29 кг
Панель/решетка в сборе	5 кг	7кг

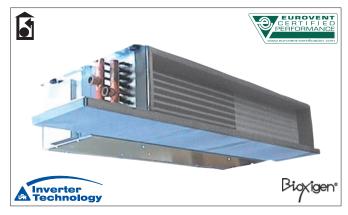
500

860

- Отверстие для конденсата: Наружный диаметр 32 мм Подача воды: 3/4 дюйма внутренняя газовая резьба Отвод воды: 3/4 дюйма внутренняя газовая резьба Сброс воздуха из змеевика Проход для электрических кабелей Забор свежего воздуха: 60 мм х 55 мм

Модель	Д	В	X	Υ	Z
IWC 6	760	310	260	860	500
IWC 8-10	1050	340	290	1150	750

КАНАЛЬНЫЕ ФАНКОЙЛЫ PWN


Ассортимент газоходов PWN разработан для систем воздушного кондиционирования в условиях помещений, требующих установки особо универсальных, среднего напора (60 Па) малошумящих устройств внутри подвесных потолков.

Эти устройства выпускаются в 9 моделях с номинальным расходом воздуха от 400 до 3 м 3 /ч, статическим напором 60 Па и охлаждающей мощностью от 2,6 до 10,3 кВт.

Концепция, заложенная в эти устройства, позволяет расширять базовую модель за счет ряда модульных вспомогательных приспособлений, что позволяет применять устройства PWN в помещениях коммерческого назначения, в спальнях, конференц-залах и т.п.

Технические особенности этих устройств таковы:

- монтаж в горизонтальном положении за подвесными потолками
- СНИЖЕННАЯ ВЫСОТА (240 мм) для всего диапазона
- СТАНДАРТНЫЕ 7-СКОРОСТНЫЕ ДВИГАТЕЛИ
- ВМЕСТИТЕЛЬНЫЙ ПОДДОН ДЛЯ СБОРА КОНДЕНСАТА, захватывающий с запасом подключения к водопроводу и канализации, что позволяет собирать конденсат с регулирующих клапанов, если они устанавливаются; смещение относительно центра значительно уменьшает требуемое для монтажа пространство.
- Может подключаться к гибкам цилиндрическим воздуховодам или к воздуховодам (Ø 200 мм) или к газоходам прямоугольной формы
- широкий диапазон вспомогательных устройств для удовлетворения требований к каждому типу установок, включая:
 - электромеханические и микропроцессорные настенные пульты управления
 - возможность подключения к сетям ERGO
 - вспомогательные устройства для подключения к воздуховодам: вентитяционные короба для подачи и забора воздуха, воздухозоборные и приточные решетки
 - напорный входной воздушный короб
 - глушители для воздухозабора и выпуска воздуха
 - 3-ходовой клапан с приводом от двухпозиционного мотора.
 - дополнительный теплообменник после нагрева для 4-трубной системы
 - дополнительные нагревательные элементы

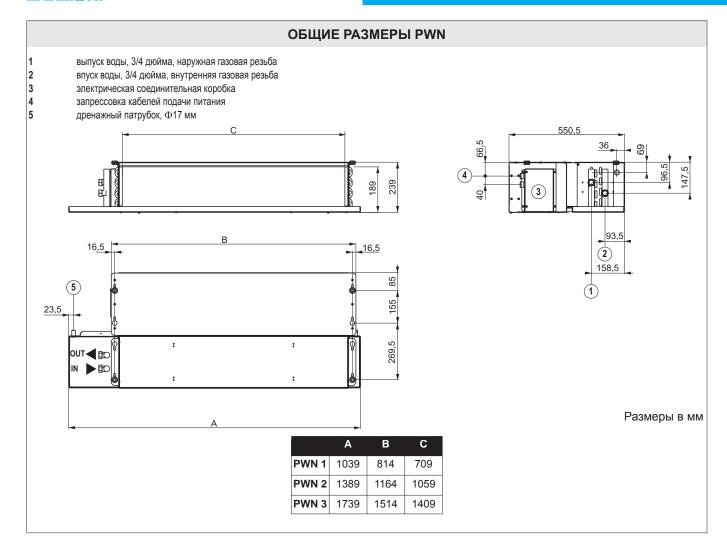
Несущая конструкция выполнена из оцинкованного стального листа, изолирована огнестойкими материалами 1 класса, стойкими к воздействию конденсата. В устройство входят:

- БОЛЬШОЙ ПОДДОН ДЛЯ СБОРА КОНДЕНСАТА с теплообменника и регулирующих клапанов, если они есть
- СОЕДИНИТЕЛЬНАЯ КОРОБКА расположена на стороне гидравлических соединений для экономии места при установке
- Прорези для быстрого монтажа
- АЛЮМИНИЕВЫЕ ЦЕНТРОБЕЖНЫЕ ВЕНТИЛЯТОРЫ С ДВОЙНЫМ УСТРОЙСТВОМ ВСАСЫВАНИЯ, со статически и динамически сбалансированными направленными кпереди лопастями, прикрепленными непосредственно к электродвигателю
- СЕМИСКОРОСТНОЙ ЭЛЕКТРОДВИГАТЕЛЬ, установленный на виброгасящих муфтах, с постоянно включенным конденсатором и тепловой защитой По отдельной заявке возможно приобретение бесщеточных (с постоянными электромагнитами) двигателей.
- ТЕПЛООБМЕННИК: ВЫСОКОЭФФЕКТИВНЫЙ, 4 ИЛИ 6-РЯДНЫЙ, выполнен из меди с алюминиевым оребрением, насаженным на трубки с помощью механического расширения, с латунным коллектором и клапаном сброса воздуха. Обычно теплообменник поставляется с соединениями под воду, установленными слева, но может быть перевернут на 180°.
- ВОЗДУШНЫЙ ФИЛЬТР выполнен из акрилового волокна, класс фильтрации EU2, помещается на воздухозаборе, может выталкиваться снизу.

НОМИНАЛЬНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ										
PWN		13	14	16	23	24	26	33	34	36
Номинальный расход воздуха	м/ч	400	400	400	800	800	800	1200	1200	1200
Доступный статический напор	Па	71	71	71	65	65	65	59	59	59
Подача питания	В-ф-Гц					230 - 1 - 50				
Максимальная входная мощность	Вт	117	117	117	200	200	200	325	325	325
Максимальный ток	Α	0,56	0,56	0,56	1,10	1,10	1,10	1,40	1,40	1,40
Общая мощность охлаждения	кВт	2,61	3,14	3,49	5,08	5,45	6,47	7,57	8,67	10,34
Общая мощность за счет отвода прямого тепла	кВт	1,88	2,16	2,34	3,60	3,87	4,40	5,23	5,96	6,90
Расход воды в режиме охлаждения	л/ч	448	539	598	873	936	1111	1299	1488	1774
Перепад давлений в режиме охлаждения	кПа	8	14	11	15	8	14	21	21	26
Тепловая мощность	кВт	5,47	6,01	6,47	10,31	11,39	12,28	15,00	16,90	18,80
Расход воды в режиме обогрева	л/ч	480	527	567	904	999	1077	1319	1479	1647
Перепад давлений в режиме обогрева	кПа	7	10	8	12	7	10	16	15	18
Тепловая мощность MDF (4 трубы)	кВт	3,14	3,14	3,14	5,99	5,99	5,99	12,80	12,80	12,80
Расход воды MDF в режиме обогрева	л/ч	275	275	275	526	526	526	1123	1123	1123
Перепад давления MDF в режиме обогрева	кПа	3	3	3	5	5	5	8	8	8
Стандартный теплообменник—количество рядов	K-BO	3	4	6	3	4	6	3	4	6
Стандартный теплообменник—подключения по воде	дюймы	3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4	3/4
Стандартный теплообменник—емкость по воде	литры	1,1	1,5	2,2	1,6	2,1	3,2	2,1	2,8	4,2
теплообменник MDF—количество рядов	K-BO	1	1	1	1	1	1	2	2	2
Теплообменник MDF—подключения по воде	дюймы	3/4	3/4	3/4	3/4	3/4	3/4	1	1	1
Теплообменник MDF—емкость по воде	литры	0,4	0,4	0,4	0,6	0,6	0,6	1,7	1,7	1,7
Мощность нагревательного элемента	кВт	2,0	2,0	2,0	2,5	2,5	2,5	3,0	3,0	3,0
Поглощенный ток нагревательного элемента	А	8,7	8,7	8,7	10,9	10,9	10,9	13,0	13,0	13,0
Питание нагревательного элемента	В-ф-Гц	230 - 1 - 50								
Общий уровень звуковой мощности	дБА	58	58	58	60	60	60	69	69	69
Macca	КГ	25,9	26,9	28,6	35,1	36,6	38,5	47,5	49,3	52,6

Данные по показателям производительности относятся к следующим условиям:

Расход воздуха: относится к номинальному статическому напору при максимальной скорости (7)


Охлаждение: номинальный расход воздуха, температура входящей воды 7 °C, температура выходящей воды 12 °C, температура воздуха 27 °C по сухому термометру и 19 °C по мокрому (относительная влажность 47 %)

Обогрев: номинальный расход воздуха, температура входящей воды 70 °C, температура выходящей воды 60 °C, температура воздуха 20 °C.

	ВСПОМОГАТЕЛЬНЫЕ ПРИСПОСОБЛЕНИЯ
	ПУЛЬТЫ УПРАВЛЕНИЯ И ТЕРМОСТАТЫ
CD	Заглубленный настенный переключатель скоростей
CDE	Настенный переключатель скоростей
TD	Настенный переключатель скоростей, термостат и переключатель летнего/зимнего режима работы
TDC	Настенный переключатель скоростей и термостат
TD4T	Настенный переключатель скоростей, электромеханический термостат и переключатель летнего/зимнего режима работы для 2- или 4-трубных систем с клапанами.
MCBE	MYCOMFORT БАЗОВЫЙ
MCME	MYCOMFORT СРЕДНИЙ
MCLE	MYCOMFORT БОЛЬШОЙ
EVO	Управляющий контроллер с дистанционным настенным пультом
LED503	Устройство управления для встроенной установки
MCSWE	датчик воды для микропроцессорных систем управления моделей EVO, MYCOMFORT БАЗОВЫЙ, MYCOMFORT СРЕДНИЙ, MYCOMFORT БОЛЬШОЙ и LED503.
TC	Термостат для поддержания минимальной температуры воды
TA	Термостат окружающей среды
TA2	Термостат окружающей среды с переключателем выбора режима работы (летний/зимний)
CSD	Встраиваемое настенное устройство управления для открывания и закрывания приводных регулируемых жалюзи SM
KP	Интерфейс питания для подключения параллельно до 4 устройств к одной системе управления СОЕДИНЕНИЯ ДЛЯ ВПУСКА И ОТВОДА ВОЗДУХА И СОЕДИНЕНИЯ ДЛЯ НАПОРНОЙ КОРОБКИ
PMA	Изолированная напорная коробка на заборе/подаче воздуха с муфтами диаметром 200
PMAC	Изолированная напорная коробка на заборе/подаче воздуха с муфтами диаметром 200
PAF	Неизолированная передняя напорная коробка на впуске воздуха с муфтами диаметром 200
RD	Прямые неизолированные подключения для впуска/выпуска воздуха
RDC	Прямые изолированные подключения для впуска/выпуска воздуха
R90	Неизолированные подключения для впуска/выпуска воздуха, 90°
R90C	Изолированные подключения для впуска/выпуска воздуха, 90°
	ШЛАНГИ/ПРОБКИ
TFA	Неизолированный шланг Ø 200
TFM	Изолированный шланг Ø 200
TP	Пластиковая пробка Ø 200
	ЗАБОРНЫЕ И ПОДАЮЩИЕ ВОЗДУХОВОДЫ
CAF	Впускной воздуховод с сотовой решеткой
CAP	Впускной воздуховод с сотовой решеткой и фильтром G2 Изолированный выпускной воздуховод с 2-сторонней решеткой
CIVI	изолированный выпускной воздуховод с 2-сторонней решеткой ЗАБОРНЫЕ И ПОДАЮЩИЕ ГЛУШИТЕЛИ
CII	
SIL	Глушитель напорной камеры для впуска/выпуска ЗАБОРНЫЕ И ПОДАЮЩИЕ РЕШЕТКИ
GM	Алюминиевая выпускная решетка с 2-рядным оперением и рамкой
GA	Алюминиевая впускная решетка с рамкой ПРИВОДНОЙ ДВУХПОЗИЦИОННЫЙ КЛАПАН (ВКЛ/ВЫКЛ)
VIV	
VK	Двухпозиционный 2- или 3-ходовой приводной модулирующий клапан с комплектом гидравлики для теплообменника контура охлаждения
KSC1	Насос слива конденсата
MDE	ДОПОЛНИТЕЛЬНЫЕ ТЕПЛООБМЕННЫЕ МОДУЛИ
MDF	Дополнительный теплообменник для горячей воды КОМПЛЕКТ НАГРЕВАТЕЛЬНОГО ЭЛЕМЕНТА
RE	Дополнительный нагревательный элемент для установки внутри блока, с предохранительным устройством
	ПРИВОДНЫЕ ЖАЛЮЗИ ЗАБОРА НАРУЖНОГО ВОЗДУХА
SM	Приводные жалюзи забора наружного воздуха

ВЫСОКОНАПОРНЫЕ КАНАЛЬНЫЕ ФАНКОЙЛЫ UTN

Ассортимент тепловентиляторов UTN предназначен для помещений с кондиционированием воздуха, в которых необходима установка воздуховода.

Предлагаются в 14 моделях, отличающихся:

расходом воздуха от 600 до 4000 м3/ч

Мощность охлаждения от 3 до 22 кВт

Тепловая мощность от 6,7 до 46,2 кВт

Благодаря применяемым инженерно-технологическим решениям устройства **UTN** обладают высокой технологической гибкостью:

- допускают горизонтальную или вертикальную установку благодаря конструкции сборного поддона
- может подключаться к гибким цилиндрическим газоходам (Ø 200 мм) или к газоходам прямоугольной формы
- направление впуска воздуха может быть определено в процессе установки
- сниженная высота (до 280 мм в модели 16А)
- Готовые прорези для подмеса наружного воздуха на всех моделях (диаметр 100 мм)
- широкий диапазон вспомогательных устройств для удовлетворения требований к каждому типу установок, включая:
 - электромеханические и микропроцессорные настенные пульты управления
 - воздухозаборные модули с фильтрами
 - вспомогательные приспособления для подключения к воздуховодам: выпускные и выпускные воздуховоды, Заборные и подающие решетки, муфты для гашения вибраций
 - двухпозиционный 3-ходовой клапан с приводом
 - дополнительные нагревательные элементы

ВАРИАНТЫ

UTN UTNDF термовентиляционное устройство, подходящее для 2-трубной системы термовентиляционное устройство, подходящее для 4-трубной системы (2 теплообменника)

По специальному запросу оба варианта могут быть изготовлены с панелями, изолированными минеральной ватой, с двойным наружным огнестойким покрытием класса 0

КОНСТРУКТИВНЫЕ ОСОБЕННОСТИ

НЕСУЩАЯ КОНСТРУКЦИЯ ВЫПОЛНЕНА ИЗ толстого оцинкованного стального листа, изолирована огнестойкими материалами 1 класса, стойкими к воздействию конденсата/не пропускающими звука. Толщина изолирующего материала — 10 мм, плотность составляет 90 кг/м³.

В устройство входят:

- смотровые панели
- комплект для наружного воздухозабора
- прорези для быстрого монтажа

АЛЮМИНИЕВЫЕ ЦЕНТРОБЕЖНЫЕ ВЕНТИЛЯТОРЫ С ДВОЙНЫМ ВСАСЫВАЮЩИМ УСТРОЙСТВОМ, статически и динамически сбалансированные лопасти которых напрямую соединены с электродвигателем.

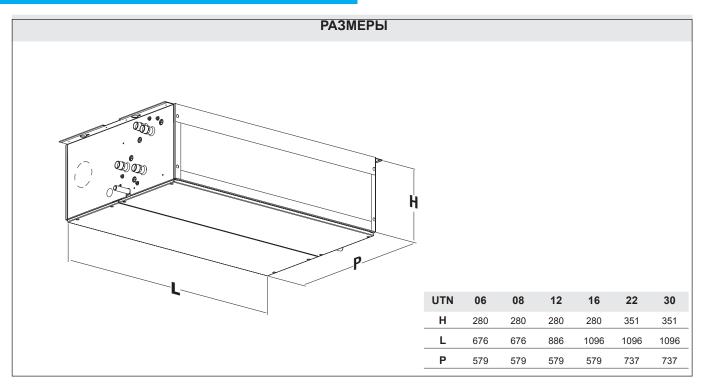
ТРЕХСКОРОСТНОЙ ЭЛЕКТРОДВИГАТЕЛЬ, установленный на гасящих вибрации муфтах, с постоянно включенным конденсатором и тепловой защитой.

По отдельной заявке можно приобрести бесщеточные двигатели (с постоянными магнитами и управляющим инвертором).

ВЫСОКОЭФФЕКТИВНЫЙ ТЕПЛООБМЕННИК, выполненный из медной трубки с алюминиевым оперением, насаженным на трубки методом механического расширения, оснащен латунным коллектором и клапаном сброса воздуха. Теплообменник поставляется с подключениями для воды, установленными слева, но его можно развернуть на 180 °. ПОДДОН ДЛЯ СБОРА КАПЕЛЬНЫХ УТЕЧЕК ВОДЫ И ДРЕНАЖНЫЙ ПАТРУБОК, позволяющие устанавливать устройство в вертикальном или горизонтальном положении. КЛЕММНАЯ КОЛОДКА быстрого подключения.

НОМИНАЛЬНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ UTN																
UTN			0 6	0 6A	0 8	08A	12	12A	16	16A	22	22A	30	30A	40	40A
Номинальный расход воздуха	Макс. скорость	м³/ч	600	600	800	800	1250	1250	1600	1600	2200	2200	3000	3000	4000	4000
Доступный статический напор	Макс. скорость	Па	80	75	90	85	88	82	100	95	130	110	185	175	156	146
Общая мощность охлаждения		кВт	3,14	3,79	3,90	4,80	6,20	7,00	7,80	8,82	11,90	13,70	16,40	18,30	19,26	22,01
Общая мощность за счет отвода прямого тепла		кВт	2,45	2,87	3,08	3,71	4,65	5,36	6,52	7,16	9,36	10,50	12,80	14,10	15,50	17,57
Расход воды		л/ч	540	650	669	824	1064	1201	1339	1514	2042	2367	2833	3140	3305	3777
Перепад давлений		кПа	12	10	17	15	24	20	24	16	26	22	34	45	23	23
Тепловая мощность	Макс. скорость	кВт	6,70	7,90	8,20	9,86	13,08	15,08	15,92	18,23	24,40	27,50	33,35	36,81	41,30	46,18
Расход воды		л/ч	588	693	720	865	1147	1323	1397	1600	2141	2413	2925	3231	3623	4053
Перепад давлений		кПа	10	8	15	12	21	18	20	13	21	18	27	36	24	24
Тепловая мощность DF (4 трубы)	Макс. скорость	кВт	3,92	3,92	4,49	4,49	6,62	6,62	9,21	9,21	15,86	15,86	21,15	21,15	24,29	24,29
Расход воды		л/ч	344	344	394	394	581	581	808	808	1392	1392	1856	1856	2131	2131
Перепад давлений		кПа	7	7	9	9	15	15	13	13	12	12	16	16	15	15
Стандартный теплообменник—к-во рядов		кол-во	3	4	3	4	3	4	3	4	3	4	4	5	4	5
Стандартный теплообменник—подключения по воде		дюймы	3/4"	3/4"	3/4"	3/4"	3/4"	3/4"	3/4"	3/4"	1"	1"	1"	1"	1"	1"
Стандартный теплообменник—емкость по воде		Л	1,06	1,41	1,06	1,41	1,42	1,90	1,79	2,38	2,50	3,34	4,02	5,03	4,70	5,88
Теплообменник MDF—количество рядов		кол-во	1	1	1	1	1	1	1	1	2	2	2	2	2	2
Теплообменник DF—подключения по воде		дюймы	3/4"	3/4"	3/4"	3/4"	3/4"	3/4"	3/4"	3/4"	1"	1"	1"	1"	1"	1"
Теплообменник DF—емкость по воде		Л	0,35	0,35	0,47	0,47	0,59	0,59	1,42	1,42	1,42	1,42	1,72	1,72	2,01	2,01
Подача питания		В/ф/Гц							230 /	1 / 50						
Максимальный ток поглощения		Α	0,718	0,718	0,954	0,954	1,575	1,575	1,971	1,971	3,210	3,210	5,370	5,370	5,556	5,556
Максимальная входная мощность		Вт	175	175	234	234	349	349	443	443	714	714	1197	1197	1150	1150
Общий уровень звуковой мощности		дБ(А)	63	63	66	66	69	69	72	72	74	74	78	78	79	79
Уровень мощности звука на выходе воздуха дБ		дБ(А)	59,3	59,3	62,5	62,5	65,2	65,2	68,9	68,9	70,7	70,7	74,5	74,5	75,4	75,4
Мощность звука	Мощность звука дБ(54,7	54,7	58,0	58,0	60,3	60,3	64,0	64,0	65,7	65,7	69,4	69,4	70,4	70,4
Уровень мощности звука на входе воздуха дБ(А		дБ(А)	59,3	59,3	62,5	62,5	65,2	65,2	68,9	68,9	70,7	70,7	74,5	74,5	75,4	75,4
Вес 2-трубной модели (UTN)		КГ	31,5	32,5	32,5	33,3	40,6	41,7	47,3	48,7	65,3	67,2	77,0	79,5	84,0	87,0
Вес 4-трубной модели (UTN DF)		КГ	33,7	34,7	34,7	35,5	43,2	44,3	50,3	51,7	70,9	72,8	83,4	85,9	92,0	98,5

ОХЛАЖДЕНИЕ: максимальная скорость вентилятора, температура входящей воды 7 °C, температура выходящей воды 12 °C, температура воздуха 27 °C по сухому термометру и 19 °C по мокрому; ОБОГРЕВ: максимальная скорость вентилятора, температура 70-60 °C, температура воздуха 20 °C; ДОСТУПНЫЙ НАПОР относится к номинальному расходу воздуха



ВСПОМОГАТЕЛЬНЫЕ ПРИНАДЛЕЖНОСТИ

ПУЛЬТЫ УПРАВЛЕНИЯ И ТЕРМОСТАТЫ

CD	Заглубленный настенный переключатель скоростей
CDE	Настенный переключатель скоростей
TD	Настенный переключатель скоростей, термостат и переключатель летнего/зимнего режима работы
TDC	Настенный переключатель скоростей и термостат
TD4T	Настенный переключатель скоростей, электромеханический термостат и переключатель летнего/зимнего режима работы для 2- или 4-трубных систем с клапанами.
MCBE	MYCOMFORT БАЗОВЫЙ
MCME	MYCOMFORT СРЕДНИЙ
MCLE	MYCOMFORT БОЛЬШОЙ
EVO	Управляющий контроллер с дистанционным настенным пультом
MCSWE	Датчик воды для микропроцессорных систем управления моделей MYCOMFORT БАЗОВЫЙ, MYCOMFORT СРЕДНИЙ, MYCOMFORT БОЛЬШОЙ и LED503.
LED503	Устройство управления для встроенной установки
TC	Термостат для поддержания минимальной температуры воды
KP	Интерфейс питания для подключения параллельно до 4 устройств к одной системе управления
IPM	Плата для подключения UTN 30, UTN 30 A, UTN 40 и UTN 40 A
TA	термостат окружающей среды
TA2	Термостат окружающей среды с переключателем выбора режима работы (летний/зимний)
CSD	Встраиваемая система управления открыванием и закрыванием РА 90
	ВОЗДУХОЗАБОРНЫЕ МОДУЛИ С ФИЛЬТРАМИ
MAF	Воздухозаборный модуль с плоским фильтром G2
MAFO	Воздухозаборный модуль с выгнутым фильтром G4
	ВОЗДУХОЗАБОРНЫЕ ПАНЕЛИ И ПАНЕЛИ НАРУЖНОГО СОЕДИНЕНИЯ
PCOC	Соединительная панель с газоходом прямоугольного сечения
PCOF	Соединительная панель с гибким газоходом круглого сечения Ø 200
G90	колено 90° для впускных и выпускных соединений ПРИВОДНЫЕ КЛАПАНЫ И ПОДДОНЫ ДЛЯ СБОРА КАПЕЛЬНЫХ УТЕЧЕК
V	*** ***
M	3-ходовой приводной клапан
R	Двухпозиционные и модулирующие приводы для работы с клапанами серии V Комплект гидравлических соединений для монтажа клапана V
VRCV	Поддон для сбора капельных утечек для вертикально монтируемого UTN
VRCV	Поддон для сбора капельных утечек для горизонтально монтируемого UTN
KSC1	Насос слива конденсата
11001	ТЕПЛООБМЕННИКИ ВТОРИЧНОГО НАГРЕВА
BP	Комплект вторичного нагрева со змеевиком горячей воды
	ЭЛЕКТРОНАГРЕВАТЕЛЬНЫЕ ЭЛЕМЕНТЫ
RE	Нагревательные элементы, защитные устройства, реле питания
	ПРИВОДНЫЕ ЖАЛЮЗИ ЗАБОРА НАРУЖНОГО ВОЗДУХА
PA90	Приводные жалюзи забора наружного воздуха
	ВИБРОГАСЯЩИЕ МУФТЫ
GA	виброгасящие муфты из ПВХ
GAT	Термостойкие покрытые силиконом тканевые виброгасящие муфты
	ШЛАНГИ/ПРОБКИ
TFA	Неизолированный шланг Ø 200
TFM	Изолированный шланг Ø 200
TP	Пластиковая пробка Ø 200
	ЗАБОРНЫЕ И ПОДАЮЩИЕ ВОЗДУХОВОДЫ
CA	Впускной воздуховод с сотовой решеткой
CAF	Впускной воздуховод с сотовой решеткой и фильтром G2
CM	Изолированный выпускной воздуховод с 2-сторонней решеткой
	CAFORIU IE IA FORAIGUUAE REIUETIJA
	ЗАБОРНЫЕ И ПОДАЮЩИЕ РЕШЕТКИ
GM	ЗАБОРНЫЕ И ПОДАЮЩИЕ РЕШЕТКИ Алюминиевая выпускная решетка с промежуточной рамой

ФАНКОЙЛЫ ДЛЯ ВЫСОКОЙ НАСТЕННОЙ УСТАНОВКИ WH

Фанкойлы для высокой настенной установки WH предлагаются в 3 моделях с мощностью охлаждения от 2 до 4,6 кВт и являются идеальными внутренними устройствами для зданий жилого и коммерческого назначений, а также для гостиниц.

В сочетании с чиллерами и тепловыми насосами Galletti они являются экологичной альтернативой системам прямого испарения.

ДОСТУПНЫЕ ВАРИАНТЫ

WH T модели с ИК-пультом управления

WH M модели, допускающие проводное управление

Доводчики серии WH уникальны по качеству применяемых в них комплектующих и по универсальности применения.

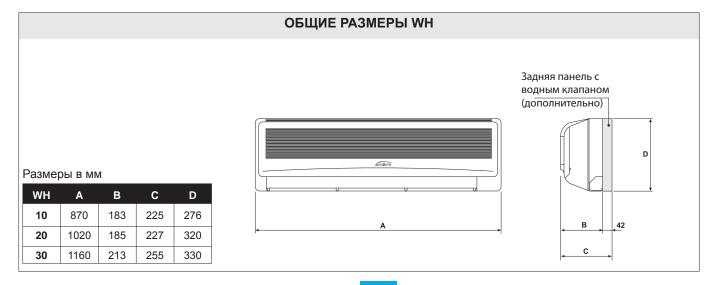
- ВЫСОКОЭФФЕКТИВНЫЙ ТЕПЛООБМЕННИК выполнен из медной трубки с алюминиевым оребрением и имеет пониженный перепад давления в водном контуре. На теплообменнике установлен ручной вентиль сброса воздуха и шланги для подключения к установке или со стороны задней панели (с клапаном, поставляется дополнительно),
- ОЧЕНЬ ТИХИЙ ТАНГЕНЦИАЛЬНЫЙ ВЕНТИЛЯТОР с приводом от 3-скоростного электродвигателя с очень малой скоростью вращения
- ПРИВОДНАЯнаружная заслонка, позволяющая отрегулировать направление движения воздуха от доводчика.
 - Функции, доступные только для модели WHT с инфракрасным пультом управления.
- Способность работать с водой ПРИ ТЕМПЕРАТУРЕ ДО 75 °С благодаря высокому качеству используемых пластиковых материалов.
- МИКРОПРОЦЕССОРНОЕ УПРАВЛЕНИЕ температурой входящего воздуха, температурой воды в теплообменнике, что позволяет регулировать обогрев в соответствии с температурой воды (от 38 до 75 °C).
 - Функция автозапуска автоматически восстанавливает работу устройства после отключения питания.
- СВЕТОДИОДЫ на передней панели указывают режим работы устройства.
- ВОЗДУШНЫЙ ФИЛЬТР ЛЕГКО ВЫНИМАЕТСЯДЛЯ ЧИСТКИ.

ИНФРАКРАСНЫЙ ПУЛЬТ УПРАВЛЕНИЯ в сочетании с микропроцессорной системой управления делает работу с вентиляторным доводчиком простой и универсальной.

- настройки температуры
- выбор скорости вентилятора вручную или автоматически
- выбор режима работы вручную или автоматически -охлаждение
 - -вентиляция
 - -обогрев
- автоматическое изменение положения заслонки на выходе воздуха при помощи системы управления положением
- установки для работы ночью
- Автоматический таймер включения и выключения в течение суток
- Часы
- Жидкокристаллический дисплей для просмотра всех функций вентиляторного доводчика

НА ЗАДНЕЙ ПАНЕЛИ УСТАНОВЛЕН З-ХОДОВОЙ ДВУХПОЗИЦИОННЫЙ КЛАПАН, что позволяет еще более точно регулировать температуру в помещении.

Привод клапана представляет собой электротермический двигатель двухпозиционного типа (ВКЛ/ВЫКЛ), рассчитанный на 230 В питания и на подключение к электрическим контактам устройства.


△Galletti

Микропроцессорные пульты управления MYCOMFORT и LED503

			WH10	WH20	WH30
Общая мощность охлаждения	Макс. скорость	кВт	2,27	3,06	4,28
Общая мощность за счет отвода прямого тепла	Макс. скорость	кВт	1,72	2,41	3,15
Расход воды		л/ч	389	524	734
Перепад давлений		кПа	15	13	18
Тепловая мощность	Макс. скорость	кВт	5,34	7,87	9,96
Расход воды		л/ч	468	685	873
Перепад давлений		кПа	15	18	19
Диаметр подключений по воде		дюйм(ов)	1/2	1/2	1/2
Диаметр патрубков для слива конденсата		MM	22,00	22,00	22,00
Объём теплообменника		дм3	0,50	1,10	1,80
Расход воздуха	Макс. скорость	м/ч	415	515	750
	средняя скорость	м/ч	360	460	630
	мин. скорость	м/ч	335	420	570
Напряжение питания		(В -ф - Гц)	230 /1 / 50	230 /1 / 50	230 /1 / 50
Поглощенный ток	Макс. скорость	Α	0,15	0,17	0,24
Входные параметры электросети		Вт	34	39	51
Мощность звука	Макс. скорость	дБ(А)	54	54	60
	средняя скорость	дБ(А)	50	51	55
	мин. скорость	дБ(А)	48	49	51
Мощность звука	Макс. скорость	дБ(А)	46	46	52
	средняя скорость	дБ(А)	42	43	47
	мин. скорость	дБ(А)	40	41	43
Размеры: высота	ММ	276	320	330	
^р азмеры: длина		MM	870	1020	1160
Размеры: глубина		ММ	183	185	213
Вес нетто, приблизительно		КГ	12	15	18

- Охлаждение: температура воды 7-12 °C, температура воздуха 27 °C по сухому термометру, 19 °C по мокрому (относительная влажность 47 %)
- Обогрев: температура воды 70/-60°С, температура воздуха 20 °С
- Звуковое давление определяется на расстоянии 1 метр, 1 метр ниже устройства, коэффициент направленности 2

ТЕРМОКОНВЕКТОРЫ КАІМАН

По случаю столетия компания Galletti представляет KAIMAN—инновационные внутренние устройства, возрождающие традицию конвективного отопления, лидером которой наша компания была с начала шестидесятых годов.

Более 40 ЛЕТ ОПЫТА и новые технологии в производстве теплообменников позволили компании Galletti разработать продукцию, которая использует принципы естественной конвекции в сочетании с современными новыми формами монтажа.

Принцип ЕСТЕСТВЕННОЙ КОНВЕКЦИИ позволяет обогревать комнату быстрее (по сравнению с традиционными статическими конвекторами).

Нужная температура воды в этих системах также достигается очень быстро, поскольку воды в теплообменнике очень немного.

Теплообменники также рассчитаны на работу с водой НИЗКОЙ ТЕМПЕРАТУРЫ, обычно получаемой из котельных в виде конденсата или поступающей из тепловых насосов.

Следовательно, температура поверхности установки KAIMAN никогда не превышает 40 $\,^{\circ}$ C, что исключает риск ожога.

Температура выходящего из установки KAIMAN воздуха такова, что она уменьшает почернение стен над устройством до минимума.

Благодаря инновационному закругленному исполнению корпуса установка KAIMAN также безопасна для детей.

Регулирование температуры в помещении при использовании установки KAIMAN достигается за счет выходной заслонки, которая в закрытом положении практически полностью останавливает теплообмен, прерывая эффект естественной конвекции.

При необходимости на установку KAIMAN можно поставить двухпозиционный клапан (ВКЛ/ВЫКЛ), который регулирует температуру в помещении и подключен к термостату окружающей среды, в свою очередь устанавливаемому на стене или на самом устройстве. Микрореле, расположенное на выходной заслонке, прерывает поток воды в теплообменнике, когда заслонка полностью закрыта.

Термоконвекторы KAIMAN позволяют гарантировать высокие стандарты качества воздуха за счет технологии BIOXIGEN (система обеззараживания и ионизации воздуха).

 ДЕКОРативный корпус нового закругленного дизайна выполнен из толстостенного стального листа, боковые рамы и решетка выпуска воздуха выполнены из пластика ABS.
 Боковая дверца позволяет осуществлять доступ к технологическим отсекам.

- РЕШЕТКА ВЫПУСКА ВОЗДУХА с двухрядным оребрением и заслонкой регулировки потока выходящего тепла выполнена из пластика ABS.
- В устройстве используется пластик с УФ-стабилизацией, поэтому он со временем не выцветает.
- ВНУТРЕННЕЕ УСТРОЙСТВО выполнено из оцинкованной стали соответствующей толщины и имеет такую форму, которая усиливает природную конвекцию воздуха (эффект тяги).
 Устройство оснащено 4 анкерными болтами для фиксации.
- > ТЕПЛООБМЕННИК высокой эффективности выполнен из медной трубки с алюминиевым оребрением, которое закреплено на трубках благодаря эффекту механического расширения. теплообменник оснащен латунными коллекторами и клапаном для сброса воздуха, выпускается с 4 или 6 рядами трубок.

Широкое расстояние между ребрами оптимизирует эффект тяги и упрощает чистку теплообменника.

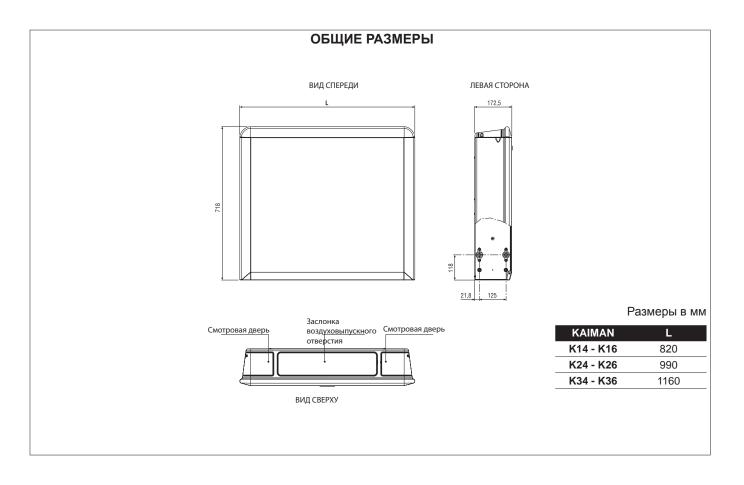
Теплообменник, который обычно поставляется с подключениями для воды, установленными слева. может быть во время монтажа развернут на $180\,^\circ$.

ВСПОМОГАТЕЛЬНЫЕ ПРИНАДЛЕЖНОСТИ

- > Ножки, скрывающие трубы, если они выходят из пола.
- > Система очистки воздуха BIOXIGEN.

Компания GALLETTI разработала свой первый статический конвектор в 1962 году.

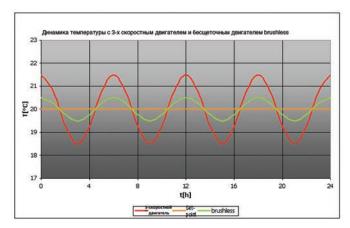
Модели CONDOR, FALCON и FALCON 80 производства компании Galletti обогревали более 2.5 миллионов домов в Италии!



НОМИНАЛЬНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ									
KAIMAN		K 14	K 16	K 24	K 26	K 34	K 36		
Тепловая мощность	кВт	1,08	1,22	1,40	1,60	1,73	1,99		
Расход воды	л/ч	92	105	120	138	149	171		
Перепад давлений в контуре воды	кПа	0,2	0,2	0,3	0,3	0,5	0,4		
Количество рядов теплообменника		4	6	4	6	4	6		
Объём теплообменника	ДМ ³	0,74	1,16	0,98	1,51	1,22	1,87		
Подключения по воде—наружная газовая резьба	дюймы	1/2	1/2	1/2	1/2	1/2	1/2		
Вес нетто		1,32	1,29	1,31	1,28	1,31	1,28		
Bec	КГ	14,5	15,0	16,5	17,0	20,0	21,0		

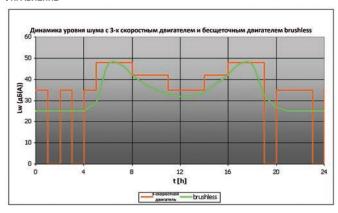
Температура окружающего воздуха 20 °C Температура воды на входе 75 °C

Температура воды на выходе 65 °C



Вентиляторы с ЕС-моторами

Внутренние устройства для жидкостного охлаждения и обогрева компании Galletti могут быть оснащены бесщеточными электромоторами с постоянными магнитами, которые управляются инвертором, что позволяет плавно регулировать количество оборотов вентилятора.


Значительным преимуществом бесщеточных двигателей является ощутимое снижение потребления электроэнергии, которое при индивидуальной работе достигает 2l_3 потребления обычных двигателей, а при совместной эксплуатации**составляет около 50 %**, что приводит к сокращению выбросов CO,!

Технология инверторов постоянного тока позволяет плавно регулировать поток воздуха для соответствия фактическим потребностям в данных условиях окружающей среды, значительно снижая колебания температуры, характерные для пошагового регулирования.

Непосредственно из-за этого снижается уровень шума от доводчика, так как он теперь работает в соответствии с потребностями окружающей среды.

УПРАВЛЕНИЕ

Эксплуатация устройств с бесщеточным двигателем осуществляется при помощи микропроцессорных пультов управления EVO или MYCOMFORT БОЛЬШОЙ через аналоговый выход (0-10 B), который подключается к инвертору.

Бесщеточные приводы вентиляторных доводчиков Galletti демонстрируют самые современные технические возможности благодаря регулированию работы в зависимости от температуры воздуха, его влажности, температуры воды, а также возможности задавать определенные временные последовательности в программе.

Цифровой выходной сигнал позволяет включать и выключать внешние устройства или блоки, такие как чиллер, котел, насосы, циркуляционные насосы и т.п.

При помощи еще одного аналогового выходного сигнала можно управлять регулирующими клапанами.

используются для

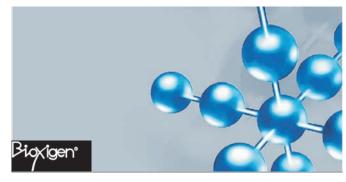
- внутренних кондиционеров типа 2х1
- доводчиков серии ESTRO1.2
- доводчиков серии FLAT
- воздуховодных устройств серии PWN
- устройств для тепловентиляции серии UTN
- кассетных устройств для жидкостного обогрева и охлаждения серии IWC
- настенных вентиляторных доводчиков высокого монтажа
- вентиляторных обогревателей AREO

СИСТЕМЫ ИОНИЗАЦИИ И ОБЕЗЗАРАЖИВАНИЯ BIOXIGEN

Компания Galletti дополнила ассортимент свои установок для кондиционирования воздуха современной системой очистки и обеззараживания воздуха, новинкой на итальянском рынке, но с сорокалетним опытом применения в странах северной Европы, которые всегда заботились об экологическом комфорте.

- застойный или загрязненный воздух, проходя через патентованную систему
 Віохідеп, обогащается ионами активного кислорода.
- > Благодаря этому нейтрализуются:
 - микробы- бактерии вирусы- пыльца пылевые клещи плесень и грибки неприятные запахи органического и химического происхождения.
- Система Bioxigen—инновационная система очистки застойного загрязненного воздуха помещений, таких как:
 - приемные врачей- клиники- больницы- офисы- магазины и общественные учреждения- жилые помещения
- > Система не использует УФ-излучение или химикаты.
- Улучшает благосостояние людей, способствует концентрации, повышает работоспособность.
- > ГАРАНТИРОВАННО РАБОТАЕТ 24 ЧАСА В СУТКИ
- > ИСПОЛЬЗУЕТ СЕРТИФИЦИРОВАННУЮ ПАТЕНТОВАННУЮ ТЕХНОЛОГИЮ.

Этот «продукт» называется Bioxigen—инновационная система ионизации воздуха, которая воздействует на сам воздух, регенерируя и обеззараживая его; она способна не только снижать количество микробов, бактерий, спор, пыльцы, плесени и грибков за счет процесса окисления-восстановления, но также уменьшает вредное воздействие загрязняющих веществ и соединений, находящихся в воздухе и вредно влияющих на здоровье.


Уменьшение количества микробов и бактерий благотворно сказывается на процессе дезодорирования: неприятные раздражающие запах различной природы, ожидаемые в замкнутых помещениях, быстро исчезают.

В результате наступает общее улучшение качества воздуха по его химическому составу, бактериальной активности, электростатическому равновесию и полному отсутствию взвешенных частиц.

Что отличает BIOXIGEN от других имеющихся на рынке ионизаторов — так это разработка и внедрение по-настоящему эффективного решения, устраняющего побочные эффекты, такие как образование озона (ОЗ).

Bioxigen позволяет нам воссоздать окружающую среду, в которой восстановлен и поддерживается правильный ионный баланс. Bioxigen позволяет нам воссоздать окружающую среду, в которой восстановлен и поддерживается правильный ионный баланс.

Таким образом, мы получаем более здоровую среду, так как бактериальное и микробное загрязнение резко снижаются, и просто более здоровое окружение, так как общая активность людей повышается за счет увеличения работоспособности и способности сосредотачиваться.

ИССЛЕДОВАНИЯ

Исследования, которые привели к разработке системы Bioxigen, следовали естественному процессу, цель которого состояла в возвращении нашей среды обитания к природному состоянию и в восстановлении идеального биологического климата в той среде, в которой мы живем.

По сути Bioxigen является энергосберегающей экологически чистой машиной.

CUCTEMA BIOXIGEN

Система Bioxigen базируется на теории поглощения света, разработанной Альбертом Эйнштейном в 1910 году. Бережно относясь к экосистеме и потребляя немного энергии, она воспроизводит естественный процесс инсоляции, при котором электромагнитная энергия активирует молекулы кислорода, присутствующие в воздухе. Подобно солнцу в незагрязненной атмосфере, система Bioxigen высвобождает активированный кислород в домашнюю и рабочую окружающую среду, эффективно снижая количество бактерий и загрязнений в воздухе помещений на 80-85 %.

В ситуациях, когда условия работы и гигиена особенно критически важны, обработку можно усилить, достигая 99 % уничтожения бактерий.

ТЕХНОЛОГИЯ

Технология в основе конструкции и разработки системы Bioxigen представляет собой особый конденсатор, называемый «ионизационной трубкой». Он состоит из кварцевого цилиндра и специальной металлической сетки, и работает от однофазного источника переменного тока, потребляя незначительное количество электроэнергии.

Электрическое поле, создаваемое между сетками ионизирующей трубки, освобождает небольшие положительно или отрицательно заряженные ионы кислорода, которые легко образуют так называемые кластеры, обладающие значительным окислительным воздействием.

используется для

- внутренних кондиционеров типа 2х1
- доводчиков серии ESTRO1.2
- доводчиков серии FLAT
- воздуховодных устройств серии PWN
- устройств для тепловентиляции серии UTN
- кассетных устройств для жидкостного обогрева и охлаждения серии IWC
- термоконвекторов серии KAIMAN

специализированные средства управления

EVO MYCOMFORT LED503 ERGO

МИКРОПРОЦЕССОРНАЯ СИСТЕМА УПРАВЛЕНИЯ С ДИСТАНЦИОННЫМ ИНТЕРФЕЙСОМ ПОЛЬЗОВАТЕЛЯ, ОСНАЩЕННЫМ ЖК-ДИСПЛЕЕМ

Эволюция микропроцессорных контроллеров Galletti позволила создать общую платформу для всех изделий группы комфорта в каталоге компании Galletti, что привело к уточнению стратегий регулирования и управления внутренними устройствами, а также к минимизации расходов и воздействия на установки благодаря конструктивным особенностям, отделяющим пользовательский интерфейс от питающих компонентов.

Контроллер **EVO** был разработан для управления работой внутренних устройств производства компании Galletti с помощью однофазных асинхронных многоскоростных двигателей или для подключения к инвертору для модулирования скорости вращения вентилятора (BLDC).

ОСНОВНЫЕ ФУНКЦИИ

- Регулировка температуры достигается путем пошаговой автоматической регулировки скорости вентилятора или путем модулирования скорости его вращения
- Регулировка температуры воздуха посредством включения и выключения вентилятора (вентилятор при этом вращается с постоянной скоростью)
- Управление двух- или четырехтрубной системой с помощью двухпозиционных или модулирующих клапанов
- Управление нагревательными элементами для вспомогательного обогрева
- Переключение между обогревом и охлаждением в следующих режимах:
 - местное переключение вручную
 - дистанционное переключение, переключение вручную (централизованное)
 - автоматическое, в зависимости от температуры воды
 - автоматическое, в зависимости от температуры воздуха
- Функция осушения
- Последовательная связь
- Работа в режиме программирования с таймером

Дополнительные характеристики включают:

- Беспотенциальные контакты для активации извне (например, оконный контакт, дистанционное включение/отключение, датчик присутствия людей в помещении и т. п.)
- Беспотенциальные контакты для централизованного дистанционного перехода между охлаждением и обогревом (логическая схема контактов: см. параметры настройки платы)
- Беспотенциальные контакты для дистанционного включения режима экономии (логическая схема контактов: см. параметры настройки платы)
- Дистанционный датчик температуры воды (вспомогательный)
- Внутренний датчик температуры
- Дистанционный датчик воздуха (вспомогательный) (этот датчик, если он задействован, используется вместо внутреннего для измерения температуры в помещении)
- Дистанционный датчик воздуха (вспомогательный—используется в сочетании с дистанционным датчиком температуры)
- Настраиваемый цифровой выходной сигнал (беспотенциальные контакты)

EVO включает интерфейс «человек/машина» настенной установки, соединенный с магистральным кабелем для запитки секции, установленной на машине.

Установка очень проста, требуется выполнить только несколько подключений. Это устройство особенно выгодно для случаев, когда нужно контролировать несколько вентиляторных доводчиков при помощи одного контроллера.

При помощи одного пользовательского интерфейса можно управлять 10 устройствами (10 внутренними установками жидкостного охлаждения и обогрева).

Отдел программного обеспечения компании Galletti разработал функции автоматического управления внутренними устройствами как в автономном режиме, так и в режиме основного и вспомогательных устройств.

Оно имеет дополнительные функции улучшенного контроля влажности и последовательного обмена данными для подключения к сетям двух типов:

- система наблюдения ERGO (решение ERGO)
- ОСНОВНОЕ УСТРОЙСТВО/ВСПОМОГАТЕЛЬНОЕ УСТРОЙСТВО с использованием только контроллеров EVO (МАЛОЕ решение)

МИКРОПРОЦЕССОРНЫЕ СРЕДСТВА УПРАВЛЕНИЯ С ЖК-ДИСПЛЕЕМ

Кондиционирование становится простым и быстрым: комфортные условия в помещении легко и немедленно регулируются новым пультом **MYCOMFORT**, который является связующим звеном единых систем кондиционирования Galletti.

Микропроцессорный пульт управления, оснащенный большим (3 дюйма) жидкокристаллическим дисплеем, позволяет задавать режим работы внутренних устройств жидкостного отопления и обогрева так, чтобы добиваться комфорта в помещениях и полностью контролировать систему воздушного кондиционирования.

Имеющиеся функции отлично дополняют предложения компании Galletti в отношении внутренних устройств жидкостного отопления и обогрева.

- НЕПОСРЕДСТВЕННОЕ ИСПОЛЬЗОВАНИЕ

Контроллер оснащен большим жидкокристаллическим дисплеем с подсветкой, со встроенной клавиатурой для ввода настроек и считывания параметров окружающей среды, а также рабочих параметров внутреннего устройства и чиллера или теплового насоса, подключенных к нему.

УПРАВЛЕНИЕ И ЭКОНОМИЯ

Автоматическое управление функциями обогрева и охлаждения в зависимости от температуры воздуха и воды.

НАСТОЯЩИЙ КОМФОРТ

Пульт управления **MYCOMFORT** способен управлять комфортным режимом работы и поддерживать его как по температуре, так и по влажности воздуха благодаря датчику, который измеряет влажность воздуха в окружающей среде и позволяет выполнять циклы осушки воздуха, включая клапаны, задействуя вентиляцию и меняя настройку температуры воды.

- КОНТРОЛЛЕР

Благодаря программному обеспечению, разработанному компанией Galletti, удалось обновить и упростить систему управления **ERGO**. Оно обеспечивает немедленное и полное отображение всех функций и их настроек, а в программное меню можно войти через жидкокристаллический дисплей.

С помощью системы управления **MYCOMFORT** можно настраивать малые и большие сети, просто соединяя на шине внутренние устройства (до 256) и наружное устройство.

- КОНТРОЛЬ И ВОЗМОЖНОСТИ

Контроль

- двух- и трехходовых клапанов, либо в режиме ВКЛ/ВЫКЛ, либо в режиме модуляции,
- внешних устройств (чиллера, бойлера, зональных клапанов, циркуляционных насосов и т.п.) посредством беспотенциальных контактов типа ВКЛ/ВЫКЛ; такой контроль основывается на параметрах окружающей среды, таких как температура воды и влажность воздуха, а также включает почасовое программирование (благодаря наличию недельного таймера).

- ПРОСТОТА МОНТАЖА/ЗАПУСКА

Быстроразъемные электрические контакты позволяют беспрепятственно монтировать схему; программирование функций и адресация упрощены и могут осуществляться непосредственно с клавиатуры и дисплея.

КОНФИГУРАЦИИ

Система управлениямусом гом может быть установлена на самом устройстве или на стене помещения, она выпускается в трех версиях, которые отличаются опциями входных, выходных сигналов и настроек:

- Базовый вариант: контроль вентиляторного доводчика и регулирующих клапанов по температуре.
- Средний вариант: контроль вентиляторного доводчика (4 скорости вентилятора) и клапанов по температуре и влажности, подключение к системе ERGO, настройка малых сетей в режиме вспомогательного устройства.
- Большой вариант: контроль вентиляторного доводчика (4 скорости вентилятора) и клапанов по температуре и влажности, а также по недельному таймеру, подключение к системе ERGO, настройка малых сетей в режиме основного устройства, дисплей с подсветкой, контроль модулирующих устройств.

ПРИМЕНЯЕТСЯ ДЛЯ

В своих различных конфигурациях при использовании специальных монтажных комплектов системы управления MYCOMFORT могут применяться для установки на следующие внутренние устройства:

- ESTRO 1.2 (встроенные)
- FLAT (встроенные)
- 2x1 (встроенные)
- IWC
- WH
- PWN
- UTN
- AREO (однофазные)

С помощью систем управления **MYCOMFORT** стало возможным настраивать крупные сети ERGO без компьютера, что делает общее предложение более практичным для пользователя и более экономичным.

ЗАГЛУБЛЕННОЕ НАСТЕННОЕ ЭЛЕКТРОННОЕ УСТРОЙСТВО УПРАВЛЕНИЯ

Предлагаемые микропроцессорные пульты управления для внутренних устройств производства компании Galletti оснащены управляющим устройством LED503 с ЖК-дисплеем, предназначенным для заглубленного настенного монтажа или для монтажа на вентиляторных доводчиках серии ESTRO 1.2.

КОНТРОЛЛЕР

Управляющее программное обеспечение, разработанное отделом ПО компании Galletti, включает в себя:

- выбор скорости вентилятора вручную;
- автоматический выбор скорости вращения вентилятора согласно разнице между заданной температурой и фактической температурой воздуха в помещении:
- выбор вручную режима работы (обогрев/охлаждение);
- автоматический выбор режима работы (обогрев/охлаждение);
- управление 1 или 2 двухпозиционными клапанами;
- управление дополнительным нагревательным элементом;
- встроенную функцию таймера для определения фактической температуры окружающей среды;
- считывание температуры окружающего воздуха, настроек, скорости вентилятора и режима работы на ЖК-дисплее.

НАЗНАЧЕНИЕ

Удобный, интуитивно понятный пользовательский интерфейс позволяет задавать все функции внутреннего устройства посредством 4-разрядного ЖК-дисплея, которые выпускается с 6 фиксированными символами для обозначения скорости вентилятора и режима обогрева/охлаждения. Функции задаются посредством 4 кнопок.

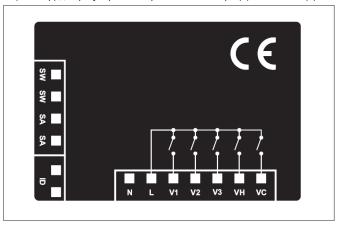
ПРИСПОСАБЛИВАЕМОСТЬ

Пульт управления может быть оснащен 1 из трех пластин, имеющихся в каталоге Galletti:

- EYCOB: Пластина - RAL9005 черная
 - EYCOG: Пластина - RAL9003 серая
 - EYCOW: Пластина - RAL7031 белая

В качестве альтернативного варианта могут использоваться пластины с 3 группировками серий 500 Vimar Idea и Vimar Idea Rondo из каталога компании Vimar.

Пульт управления может быть смонтирован на вентиляторных доводчиках estro 1.2 при помощи комплекта для установки в устройство; этот вариант доступен для следующих моделей:



- estro 1.2 FL
- estro 1.2 FU
- estro 1.2 FB

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

- Питание 230 В переменного тока/50-60 Гц
- Соединение: фиксированные контакты
- 1 цифровой вход (беспотенциальный), который при помощи программного обеспечения можно настроить на дистанционное включение/выключение или выбор режима обогрева/охлаждения
- 1 встроенный датчик с отрицательным температурным коэффициентом для считывания температуры помещения (при настенной установке)
- 2 дистанционных датчика с отрицательным температурным коэффициентом — один для считывания температуры воды (вспомогательный) в теплообменнике внутреннего устройства, и еще одни для считывания температуры в помещении при установке на фанкойлы Estro.
- 5 цифровых выходов под напряжением с электромеханическими реле (5 ампер) для регулировки скорости вентилятора (3) и клапанов (2)

СИСТЕМЫ ОБЩЕГО НАБЛЮДЕНИЯ НАД ОБЪЕКТАМИ ОВКВ

Решение **Ergo** результат многолетнего опыта компании **Galletti** в области ОВКВ, был создано в ответ на потребность в упрощенном управлении системами обогрева и кондиционирования воздуха, а также из-за необходимости добиться экономии энергии и из-за потребности в переходе на микропроцессорные комплектующие.

Специально предназначены для:

- гостиниц
- офисные здания/ офисы
- обслуживаемое жилье
- учреждения

Ergo—это новая централизованная система управления кондиционированием, основанная на специализированном программном обеспечении и микропроцессорных контроллерах внутренних устройств.

Система **Ergo** компании **Galletti** предназначена для владельцев зданий, планировщиков, конструкторов и монтажников, которым она дает возможность осуществления стратегии управления, которая связывает работу чиллера и внутреннего устройства с фактической тепловой нагрузкой, обеспечивая тем самым:

- экономию энергии при производстве охлажденной воды
- простую и экономичную установку
- снижение эксплуатационных затрат
- удобную для пользователя эксплуатацию
- дополнительные возможности
- централизованный контроль над системой

УПРАВЛЯЮЩЕЕ ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ СОСТАВЛЯЕТ ЯДРО ERGO

Программное обеспечение анализирует рабочие условия внутреннего устройства в режиме реального времени для определения мгновенной фактической тепловой нагрузки для каждого пользователя, что является существенно необходимым условием для работы стратегии регулирования, сводящей к минимуму эксплуатационные затраты при одновременной наилучшей организации условий работы системы.

КОМПЬЮТЕРИЗОВАННАЯ СИСТЕМА ПРИСПОСАБЛИВАЕТСЯ К МГНОВЕННОЙ НАГРУЗКЕ!

ОТСЛЕЖИВАЕТ

работу внутренних устройств

ПРИСПОСАБЛИВАЕТ

работу всей системы к фактической ситуации

РЕШАЕТ

соответственно (формулирует стратегию)

ОТСЛЕЖИВАЕТ

систему снова (для оценки воздействия решения)

Система Ergo компании Galletti может контролировать до **247** помещений, поддерживая температуру, заданную пользователем, в соответствии с общими требованиями системы.

Система выполняет только кондиционирование воздуха в жилых помещениях, что означает существенное снижение энергопотребления, и одновременно управляет работой чиллера или теплового насоса.

Программа может быть ПОДОГНАНА ПОД ПОЛЬЗОВАТЕЛЯ, чтобы обеспечивать все потребности пользователя, от автоматической настройки эксплуатации отдельных устройств до почасового/еженедельного программирования на различных температурных уровнях.

«Большой» вариант имеет два уровня доступа:

Пользователь

(«базовый» уровень, предназначенный для конечных пользователей)—для личного контроля основных рабочих параметров

Сервисный

(«продвинутый» уровень, предназначенный для менеджеров системы и персонала технического обслуживания), позволяет свободный доступ к общесистемным функциям управления.

Пользовательский интерфейс отображает общее рабочее состояние системы, каждого отдельного помещения, а также чиллера или теплового насоса.

Собираются и отображаются следующие данные:

- средняя уставка температуры
- среднее время ВКЛЮЧЕНИЯ внутренней установки
- средняя температура воздуха
- преобладающая рабочая скорость вентилятора
- ПОКАЗАТЕЛЬ КОМФОРТА

Позволяет оценить эффективность системы

Для каждого отдельного помещения постоянно считываются показания рабочей температуры (воды и воздуха), пользовательские настройки, время работы и **ПОКАЗАТЕЛЬ КОМФОРТА**.

Одновременно система отслеживает состояние чиллера, считывая основные параметры, сигналы тревоги (если они есть) и, кроме всего прочего, включает **АДАПТИВНУЮ ФУНКЦИЮ** .

ПОКАЗАТЕЛЬ КОМФОРТА

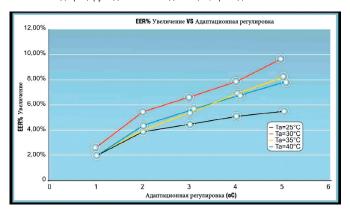
Значительной новинкой и отличием **Ergo** является введение показателя комфорта, инновационной идеи измерения комфорта в помещениях с кондиционированием воздуха.

Показатель комфорта определяется как процентная доля времени, в течение которого температура воздуха в помещении остается близкой к заданной уставке температуры в пределах определенного интервала.

Показатель комфорта может использоваться для оценки общего качества работы системы кондиционирования воздуха, что позволяет вычислять адаптивную функцию и отслеживать сбои в каждом из внутренних устройств.

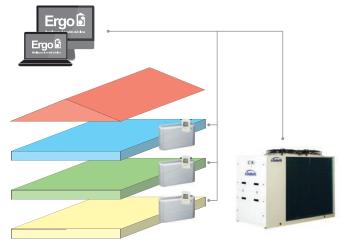
АДАПТИВНАЯ ФУНКЦИЯ

Постоянное опрашивание каждого из внутренних устройств позволяет определить их мгновенную тепловую нагрузку, основополагающий параметр для адаптации чиллера или теплового насоса к фактическим потребностям.

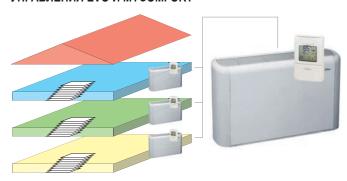

Адаптивная функция, по сути, является корректировкой уставки, благодаря чему повышается эффективность цикла охлаждения.

Корректировка уставки осуществляется ОДНОВРЕМЕННОпо следующим параметрам:

- ПРЕОБЛАДАЮЩЕЙ СКОРОСТИ = то есть, по тому, какая из скоростей вращения из трех возможных, преобладала в данный момент времени. Чем выше преобладающая скорость, тем меньше корректировка уставки чиллера.
- ПОКАЗАТЕЛЮ КОМФОРТА = чем выше показатель комфорта, тем более значительные корректировки уставок чиллера допускает система.
- СРЕДНЕЕ ВРЕМЯ ЭКСПЛУАТАЦИИ = чем дольше работает вентилятор (рассчитывается как среднее значение по всем внутренним устройствам), тем меньшую коррекцию уставки чиллера допускает система.


Амплитуда коррекции—это параметр, который можно задать на этапе запуска системы.

Улучшение эффективности, которое достигается за счет корректировки, особенно заметно в режиме теплового насоса, когда воздействие адаптивной функции косвенно модифицирует давление конденсации, приводя к его снижению.


ERGO В «БОЛЬШОМ» ВАРИАНТЕ ОБЫЧНО ВКЛЮЧАЕТ:

- комплект ВНУТРЕННИХ УСТРОЙСТВ (в комнатах отеля или офисах), каждое из которых оснащено микропроцессорным контроллером, который управляет всеми функциями устройства (автоматическое переключение скоростей, автоматическая смена режима, работа клапанов и нагревательных элементов), включая также последовательную карту Modbus RS 485
- Все МИКРОПРОЦЕССОРНЫЕ КОНТРОЛЛЕРЫ соединены параллельно через шину данных, которая состоит из простого двужильного экранированного кабеля.
 - Чиллер, оснащенный пультом управления с последовательным портом Modbus RS 485, также подключен к этой же шине данных.
- Возглавляет коммуникационную сеть программное обеспечение ERGO, установленное на обычном персональном компьютере (обычно устанавливаемом в холле гостиницы или в группе офисов) или на ПК с плоским сенсорным экраном.
- Пакет программного обеспечения Galletti ERGO уже включает все элементы, необходимые для запуска системы, включая RS232-RS485 или конвертер USB RS 485.
- На этапе конфигурирования каждое внутренне устройство настраивается отдельно и ему присваивается адрес и рабочие режимы.
 Таким образом, становится возможным постоянно отслеживать и/или изменять работу каждого из устройств.

В ОСНОВУ «МАЛОГО» РЕШЕНИЯ ПОЛОЖЕНЫ СИСТЕМЫ УПРАВЛЕНИЯ EVO И MYCOMFORT

МАЛОЕ решение представляет собой систему из основного и подчиненного (вспомогательного) устройства, расширенную до 247 терминалов, в которых пульты управления EVO или MYCOMFORT СРЕДНИЙ или БОЛЬШОЙ соединены вместе, и одни из них, особым образом сконфигурированный, имеет функцию ГОЛОВНОГО устройства.

В МАЛОМ решении нет необходимости дополнительного расширения системы для контроля вспомогательных приспособлений, таких как клапаны или нагревательные элементы, непосредственно управляемые индивидуальными командами.

В контроллере уже имеются все резисторы. необходимые для правильного функционирования сети (поляризационные и оконечные резисторы, которые можно включить с помощью перемычек).

ГОЛОВНОЙ контроллер задает режим работы (обогрев-охлаждение) и уставку температуры для всей сети в обоих режимах работы.

Индивидуальные пульты управления (вспомогательные устройства) позволяют задать скорость работы вентилятора и отрегулировать уставку по температуре на +/-2 °C.

Малое решение немедленно превращается в большое, как только в систему устанавливается и подключается персональный компьютер с программным обеспечением Ergo.

ПРЕИМУЩЕСТВА РЕШЕНИЯ ERGO

ПРОСТОТА

Прокладка кабеля шины данных не требует специальных навыков, однако рекомендуется убедиться, что кабель пригоден для передачи данных по протоколу RS-485 и соблюдать некоторые основные инструкции.

Технические параметры и рекомендации может предоставить изготовитель.

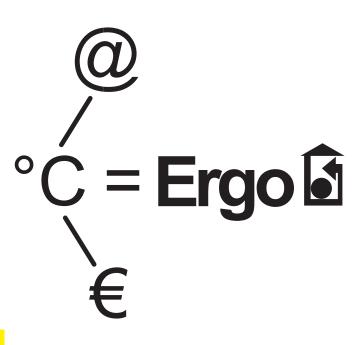
ВЗАИМОСВЯЗАННОСТЬКомплектующие соединены друг с другом и обмениваются информацией.

О ОБЩИЙ КОНТРОЛЬ

Можно точно установить иерархические отношения между компонентами системы и ограничить возможность местного воздействия.

Стратегия управления

Система отличается ГИБКОСТЬЮ в работе и приспосабливается к фактическим потребностям, не усложняя работу чиллера (не происходит уменьшения уставки, как это обычно случается в системах без резервуара запаса): система работает в наиболее благоприятных условиях, допускаемых данной тепловой нагрузкой.


9КОНОМИЧНОСТЬ
Микропроцессорная система имеет весьма умеренную стоимость: дополнительные вложения по сравнению с классической системой невелики.

УМЕНЬШЕНИЕ ЭКСПЛУАТАЦИОННЫХ ЗАТРАТ
Использование объединенного управления системой и применение стратегии корректировки приводит к эффективному уменьшению эксплуатационных затрат, и система быстро окупается.

ПРИМЕНИМОСТЬ РЕШЕНИЯ ERGO

Внутренние устройства	настенные	сустановкой наустройстве
ESTRO* фанкойлы	\checkmark	\checkmark
2X1 Внутренний блок для систем кондиционирования воздуха	V	V
FLAT фанкойлы	\checkmark	\checkmark
IWC фанкойлы с водяной кассетой	\checkmark	
WH настенные фанкойлы высокого монтажа	\checkmark	
PWN газоходные устройства	\checkmark	
UTN Высоконапорные канальные фанкойлы	\checkmark	
AREO однофазные вентиляторные обогреватели	\checkmark	

^{*} В моделях estro 1.2 FL, FA, FU, FB

Via Romagnoli 12/a - 40010 Bentivoglio Bologna Италия Тел. +39 051 8908111 факс +39 051 8908122 www.galletti.it - info@galletti.it